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Problem definition: a two-stage stochastic problem

First stage: an "assignment” problem.
Facility location: Customers assigned to open facilities
- (Generalized Assignment: Tasks assigned to agents

- Vehicle Routing: Customers assigned to vehicles

- Second stage: an stochastic demand to be served with outsourcing/penalty.

- Customer/task demands are served by the assigned facility/agent/vehicle minimizing
COst.

f the total demand is higher than the capacity, the unserved demands is outsourced /
penalized at a higher cost.

- Objective: Minimize the assignment cost + expected value of serving demand.

- This talk: Solve the problem for general probabillity distributions (not scenarios)
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Capacitated Facility Location
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Given a set of customers J with demand c{]
and a set of potential facilities /

to decide a subset of facilities to open (y; = 1)
and an assignment of customers to facilities (x;;
to fulfill the demand of clients (w;; € 10, d]

minimizing the installment and as&gnrrent cost.
while satisfying the capacity of the facility K;
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Capacitated Facility Location
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and an assignment of customers to facilties (x;; |
to fulfill the demand of clients (w;; € 10, d]

minimizing the installment and as&gnrrent cost.
while satisfying the capacity of the facility K;
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Capacitated Facility Location
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Capacitated Facility Location
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Capacitated Facility Location
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Given a set of customers J with demand c{]

and a set of potential facilities / d=3

to decide a subset of facilities to open (y; = 1) m m
and an assignment of customers to facilities (x;; = 1)

to fulfill the demand of clients (w;; € 10, d] = @ =0

minimizing the installment and as&gnrrent cost.
while satisfying the capacity of the facility K; ~
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Capacitated Facility Location with Outsourcing
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Given a set of customers J with demand c{]
and a set of potential facilities /

to decide a subset of facilities to open (y; = 1)

and an assignment of customers to facilities (x;; = = 1) )
to fulfill the demand of clients (w;; € 10.d. ] - ‘

minimizing the installment and aSS|gnrrent cost.
while satisfying the capacity of the facility K; .
allowing to outsource some demand (at a higher cost). gi_gu@um@_}
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Capacitated Facility Location with Outsourcing
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Given a set of customers J with demand d;
and a set of potential facilities / d;

to decide a subset of facilities to open (y; = 1)
and an assignment of customers to facilities (x;; = = 1)

to fulfill the demand of clients (w;; € 10, d] - Q
minimizing the installment and as&gnrrent cost.

while satisfying the capacity of the facility K; . -
allowing to outsource some demand (at a higher cost). g&t\sourci@ O=
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Stochastic Capacitated Facility Location with Outsourcing
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Given a set of customers J with random demand ¢; g
and a set of potential facilities /

il

to decide a subset of facilities to open (y; = 1) m

and an assignment of customers to facilities (x;; = i ) 2 ?

to fulfill the demand of clients (w;; € 10, d] — Q 5@ m

minimizing the installment and as&gnrrent cost. ,

while satisfying the capacity of the facility K; . -
allowing to outsource some demand (at a higher cost). g = Out\sourci@ OE
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Stochastic Capacitated Facility Location with Outsourcing
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Given a set of customers J with random demand ¢; g
and a set of potential facilities /

il

to decide a subset of facilities to open (y; = 1) m m
and an assignment of customers to facilities (x;; = i ) 2 ?

to fulfill the demand of clients (w;; € 10, d] — Q 5@ m

minimizing the installment and as&gnrrent cost. ,

while satisfying the capacity of the facility K; . -
allowing to outsource some demand (at a higher cost). § = Out\sourci@ OE
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to
open facilities and assign customers to them.

{—gutsourcirﬁ_}.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem: :
- 1st stage decision (here-and-now): to m
open facllities and assign customers to them. m m

- 2nd stage decision (wait-and-see): to
g_gutsoum;@

route and/or outsource the random demand.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem:

-+ 1st stage decision (here-and-now): to
open faclilities and assign customers to them.

- 2nd stage decision (wait-and-see): to
route and/or outsource the random demand.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem:

-+ 1st stage decision (here-and-now): to
open faclilities and assign customers to them.

- 2nd stage decision (wait-and-see): to
route and/or outsource the random demand.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem: 2 Wi S K; -y,
- 1st stage decision (here-and-now): to J
open faclilities and assign customers to them. Second-stage problem

- 2nd stage decision (wait-and-see): to (independen’[ for each faCm’[y)

route and/or outsource the random demand.
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Second-stage problem : Knapsack problem
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Optimal solution: to allocate the demand

IN decreasing order of profit 8ii — Cij until -
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a
sample average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Computational experiments
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Dual solution of the subproblem

Primal formulation: Oi(x. . &) = mf(}f Z (8 — )W,
w
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Dual solution of the subproblem

The dual of the subproblem is given by

QZ(CU,y,g) = Igél’lqulzjawfjxw T fYZK’Lyz
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Qij + Vi = Gij — Cij VieJ
and Its solution Is given by i Vi 2 Vi€
&
vy Y; >0 ) |
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and \A/l. s the cost of the critical customer 7! where the
capacity of the facility is fulfilled (or zero if not).
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Dual solution of the subproblem
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Dual solution of the subproblem
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Dual solution of the subproblem

— Primal solution Dual solution
I A
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Dual solution of the subproblem

— Primal solution  Dual solution
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Wi = 2 %1 = 8i1 ~ Ci
- Pip = 8 — Cip
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Dual solution of the subproblem

— Primal solution  Dual solution
O — 1 =0 =>v.=0
= Wi = I
e W, =2 %1 = 8i1 ~ G
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% Wiz = An = g — C;
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Benders formulation for a discrete set of scenarios

Given a discrete set of scenarios s € S with probability P, we can reformulate

min nyl + ) ) g — ), ) pb

el el jej el ses

x,y)ex x,y € {0,1}
0! < Ql(x,v,&) VielseS

and
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for any feasible dual solution
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Benders formulation for a discrete set of scenarios

Given a discrete set of scenarios s € S with probability P, we can reformulate

n;,iyn Zfiyi T Z Z ikt~ Z Zp b,

il icl jel icl seS

(x,y) € X x,y € {0,1}
0! < Ql(x,v,&) VielseS

We can be solve it by iteratively adding Benders optimality cuts for the given
incumbent solution (x*, y*)

. 5 ~+ 5
l A A
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a sample
average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Computational experiments
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Computing E [Qi(X, Y, 5)]

— Primal solution Dual solution
>3 = .
C_> Wllz T-@:VZ—O
2 Wy =2 = %? = ), -
D , Can we “group” all scenarios
% Wiz = where customer 2 is critical?
O 3 Wi =3
o = Wip =
D - o
A - Wiz =
2 = Wi1 = 4
= ) Wi =
C —
. Wiz =
N
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Expected value of the second-stage problem
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[<)




Google Research

Expected value of the second-stage problem
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= [Q1x,y.8)] = ) (85— ) = (8141 — i) - E |min{Si(x, &), K}
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Expected value of the second-stage problem
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l<j g,-c. —
5 = min{S; (x,8), K.} — mm{Sl (x,6), K } IR —
) & h &s B &3 B &4 B 3 »

= [Q1x,y.8)] = ) (85— ) = (8141 — i) - E |min{Si(x, &), K}

jel




Google Research

Expected value of the second-stage problem

For a fixed x we can obtain closed formulas for many demand distributions:

Bernouli distribution with mean ;:  Ewil = ;- Fs (K= 1)

Poisson distribution with mean j;;

‘[IIliIl{S}(X, 5), Kz}] — Ki - (1 _fPOisson(ﬂSj(x,@)(Ki)) T (/“tSj(x,cf) - Kz) I P0iss0n(/45j(x,@)(Ki — 1)

Exponential distribution with mean fi:
‘[min{Sj(xa §),Kiyl=j-pu-F Gamma(j+1,1/,u)(Ki) + K; (1 — Gamma(j,l/,u)(Ki))




Key idea: How to compute E [min{Sj"(x, ), Ki}]
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By the law of total probabllities:

® |min(S/(x, ), K} | =

Sji(xa $) = Z SiXir

- lmin{é}"(x, &), K - lSJi(x,cf)SKi] +

— lmin{b}l(x, 5),Ki} ' 15}(36,5)>Ki
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

By the law of total probabllities:

- min{b}?(x, 5),Ki}] = IC lmin{S}(x, c), K;} - 15;‘(x,5)s1<,-] T I lmin{b}?(x, c), K} - IS}(x,§)>Ki

= lSji(x, g) - 1S]?(x,§)SK,-] + lKi‘ IS;(x,fS)>Ki]

Sji(xa $) = Z S1Xil




Key idea: How to compute E [min{Sj"(x, ), Ki}]
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By the law of total probabllities:

® |min(S/(x, ), K} | =

2

- lmin{S}(x, £),K.} -1 S;’(x,g)sK,-] + [ lmin{b}?(x, £),K.} -1 Six.)>K,

- lSji(X, &) - 1S]?(x,§)§K,-] T lKi‘ IS]?(x,§)>Ki]

= le&z’ lSJ?(x,cf)SKi] X+ K- P lSji(X, ) > Ki]
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

By the law of total probabllities:

- min{b}?(x, 5),Ki}] = IC lmin{S}(x, c), K;} - 15;‘(x,5)s1<,-] T I lmin{b}?(x, c), K} - IS;'(x,f)>Ki

= lSji(x, g) - 1S]?(x,§)SK,-] + lKi‘ IS}(X,@>K1']

Z = le&z' lSJ?(x,cf)SKi] X+ K- P lb}i(x, ) > Ki]
I<j /! /!

Sji(xa $) = Z SiXir

Non-linear function because coefficients also depends on x




Key idea: How to compute E [min{Sj"(x, ), Ki}]
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But we can use another first-stage assignment x’ too

- |min(Si(x, ), K} | =

<

— lmln{‘s}l(xa 5)91{1} . 1;5}?(X',§)SK,-] + I lmln{‘sj;(xa 5)91{1} . 1‘5}?(x’,§)>Ki]

2

: lSjl(x’ 6) 15;@:5)9@] +E lKi‘ 1S}<x',5>>1<i]

- le&z' 15;(x',5)s1<,.] X+ K- P lSji(X’, &) > Ki]

Linear upper bound for a fixed x’
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

Lemma: [ [min{é}?(x, ), Ki}] s a concave function at x and

h]l(xa x,) .= Z - lé:[ ’ 1S]l(x,,§)SKl] ’ xll + Kl ’ [FD lSji(x', 5) > Kl]
I<j

s in its subdifferential at x”
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Example:

Two demands &; w exp(1/2) and &, w exp(1/3) with K=3

, !
| ! : '

] L i ( I | I 1 1 ! | O | | [ ! I 10

0.0 0.5 1.0 0.0 0.5

= [min{S,(x, £),3}] hi(x, x") at x" = (0,1)
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Benders formulation for general distributions

We add a variaple z; > () which correspond to the value of E lmin{Sji(x, £), K}

min Zfiyi + Z 2 Siilirii — Z Z (Ci,ai( )~ Cioi( j+1))sz

I el icl jeJ icl jeJ

't can be solve by iteratively adding Generalized Benders optimality cuts for the
given incumbent solution (x™, y*)

2 < Z - lgtl. 15;(x',§)s1<,-y{] Xy + Ky P |SI,€) > Kiyi/]
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Improving Benders formulation for general distributions

1) Sulbmodularity of E lmin{b}i(x, £),K:}| . A set-valued function is sub modular if

it has “diminishing returns”.

. Lemma: Set-valued function p(A) := min{Sj(l 1, ¢), K:y:} is submodular for

a given x, y, C.

. Corollary: Set-valued function #'(A) := [E [min{b}(l 45 C), Kiyi}] S sub-

modular for a given X, y.
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Improving Benders formulation for general distributions

Since E min{SJ?(x, &), Ki}] IS submodular, we can add submodular cuts (*)

“ < _[min{Sj(xl)a Kiyi}] -y + Z _[511 S{(x)+ELK; T (Ki — Sj(x,))15’].(x')§1(i<5j(x')+gl] * X
x;=0

- Z (6L ax, + (K= (8= ED1 g _zcies ) (1= X))
[:x/=

(*) see Nemhauser & Wolsey (1981), Ljubic & M. (2018)
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Example:

Two demands &; w exp(1/2) and &, w exp(1/3) with K=3

1.0

0.5

0.0

| 1.0
0.0

Submodular cut at x" = (0,1)
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Improving Benders formulation for general distributions

2) Valid constraints on z;; variables. (sz ~ lmin{b}i (x.€). K }])

Zjj S Z =[S

IeJ:6' (<6 j)

Zij < Zi,j—l + _[fj]xlj
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Improving Benders formulation for general distributions

3) Both Bender and submodular cuts requires an integer solution x’ to compute

the coefficients to generate a cut. Can we create cuts for the relaxation of the
poroblem??

f D) si<oicp X = K € N, we can consider to sum the & “worst” customers

Proposition: Assume that random demands can be ordered in the usual
stochastic order g1y 2 §2) 2t --+5(j)- 1hen

- lmin{b}(x),Kiyl-}] < lmln { Z f(l)’ }]
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Improving Benders formulation for general distributions

Let B, (k) := ~[min{ &, K:y;}] the expected value considering the “worst” k
customer. We can extend this function using a piece-wise linear function,
creating the valid upper bound: R
2 < Bi(k) + (Bi(k + 1) — B(K)) - D) x—«
leJ:6'(D)<6'(j) B / Bif® i
For i.i.d. demand distributions, & is the sum i
of k random variables. The bound is tight. SN S S -

For single-parameter distribution (e.g. exponential or Poisson) the k worst
customers are the one with higher expected demand. The bound is not tight.
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a sample
average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Computational experiments
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Computational experiments

Dataset tor benchmarking:

- Albareda-Sambola et al (2011). 297 instances based on TSP problems, with
15 facillities and 30 customers.

- Random demands with Bernoulli and Exponential distributions with mean
value 0.1, 0.5 or 0.9.

+ Comparison of Benders, Submodular and PWL cuts using multi-cut (one cut for
each sz) or a single-cut (aggregated cut for each facility).

+ Coded in C++ using Gurobi as solver.
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Performance profile for 1.i.d. demands

bernoulli_iid exponential_iid
100% -~
907%1 Algorithm
N 80%- — GB
S 70%-
- ° —— GB+SM
(©
i 60%- —— GB+PWL
C
o —— GB+SM+PWL
S 40%-
— :
©  30%- MultiCut
NS .
10% - = = Single cut
0% -

0% 5% 10% 15% 0% 5% 10% 15%
True Gap obtained (timelimit: 1 hr)

- Adding PWL cuts solved all problems in a few seconds
- 50%/40% of instances are solved up to optimality. ~80% with <5% gap.
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Performance profile for 1.i.d. demands

bernoulli_iid exponential_iid bernoulli_iid exponential_iid
20% -
Q
© .
% MuIUCgt 15%- ° MultiCut
2 100 £ Multi cut o ° o £ Multi cut
o ' c
) Single cut o o Single cut
Q +J o/ O
! Algorith R T e
v 10- Jorithm o Algorithm
= I I I ES GB+PWL Q frage
[ ?
o 1 I I . . - B GB+SM+PWL o . B GB+SM
E 7 I i - I I - CEx I
3 I
3 1 oo || e i ll -
0.1- 0%- P | I
0.1 0.5 0.9 0.1 0.5 0.9 i N N S N N

Mean demand of distribution
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Performance profile for non-I1.1.d. demands

bernoulli
100% -
90% - .
Algorithm
80% -
n ’ — (5B
Y 70%-
c e GB+SM
O o/,
I 60% e GB+PWL
£ o/
g 0% — GB+SM+PWL
S 40%-
e 30% - MultiCut
X 500, — Multi cut
f -
0%, = = Single cut
6 -
0% -

0% 5% 10% 15%
Best Gap obtained (timelimit: 1 hr)

- oo many cuts. Aggregating cuts performs better.
- PWL cuts are not longer efficient. Submodular cuts improve the performance
- Still > 90% of instances solved with <5% gap.
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Comparison with sample average approximation

bernoulli
100% - — e mEEEE————————-
90(y 0---‘-“ "4—-‘;’—
0 - b
gl .

80% - g Algorithm

(Vp] *"® %
.‘ /

§ 70% - o ,/,/ — SAA (10 scen)
8 60%- /9/ —— SAA (100 scen)
n ad ?
= o/ | N 4 —— SAA (1000 scen)
- 50% //
c .' .
5 40% - //// MultiCut
o : P

30% - - P —— Multi cut
X : ’

20% - : / — = Single cut

; P
10% - : Y 4
. R4 R R
0% - == —
0% 5% 10% 15%

Best Gap obtained (timelimit: 1 hr)

- SAA with 10 scenarios is solved up to optimality, but solution quality is very bad.
- Adding more scenarios improves the quality but became harder to solve.

- Generalized Bender outperforms SAA, particularly for smaller gaps.
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Conclusions

Benders methodology for two-stage assignment problem where the second
stage Is a stochastic knapsack problem

- An exact solution to the problem is achievable, precluding the necessity for
scenario sampling.

- We can exploit the structure of the subproblem: small number of optimal
dual solutions where we can compute the expectations by conditioning.

Not an approximation! Provide true bounds for the problem.
- Similar ideas can be extended to other problems.

+ See also Benders Adaptive Partition cuts (Ramirez-Pico & M., Math Prog
2022, Ramirez-Pico, Ljubic, M., Transp Sci 2023).
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Compact formulation for i.i.d. distributions

Case: customer demands are i.i.d.: cumulative demand §; of the [ best
customers doesn’'t depend on which customer are the best.

et Cil = IC lmax {Sl, Kz}] — [C lmax {Sl_l, Kz}] (Can be precomputed using previous formulas)

then E[Q'(x,y.& = ) (g;— ;)" Ciriiy* %y
jel
where r,(j) is then is the ranking of customer j among the customers

assigned to facility 1 in decreasing order of (glj — C;;

9]
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Compact formulation for i.i.d. distributions

New variable: z;; € {0,1} if customer j is the [-best customer assigned to

miﬂz fiyi + L ng'j/iil?ij — Z Z(gz‘j — ¢ij) - Cit - Ziji
i€l i€l jeJ i€l jeJ Constraints from main problem

| J|
Lij = Z <ijl [f assigned then it must have a ranking position
=1
Z Zijl S Yi At most 1 customer on each ranking position
jeJ
| J|
f z., = 1 then at least [ — 1 other customers
D (1=1)- 2 < > Tik J

-1 ki Gin—Cin >gis—Cis with higher profit must be assigned to 1
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Expected value of the second-stage problem

l — = [ ws :
= [0/, 3, 0] = ) (g — ¢ - lwlj]
JEJ oo
i
| et SI (x, &) be the aggregated. de.mand of the I.--I-
best j customers assigned to 1: S;(x, &) = Zé’lxﬂ S

[<)

Then:

. +
: [Wg] = [51" 1S}<x,5>g<,] +E [(Kz =51, 5)) ' 15;<x,af>>1<,-]
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Benders formulation for general distributions.

Previous formulation only applies to a finite set of scenarios (for example, a
Bernoulli distribution, or sampled scenarios from the original distribution).

But we can explote the structure of the dual subproblem to solve this problem
for general distributions.

n;iyn Zﬁ)’i T Z 2 SijHiij — 2 O,

i€l il jeJ el

X;i XY, Ax+By<h x,ye {01}

®i < B [Qi(xaya 5)]
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Computing E [Qi(X, Y, 5)]

We know how to solve the dual subproblem for a given scenario

_|_
Qi(x 5): “_C”_\’}; §x+\’}§K .
> s 5ij — Cij — Y jrA TV Bt )i

jel

obut we need to compute thelr expected value over all scenarios.

In the (unlikely!) case that the dual solution \A/l. IS the same for all scenarios, then

100,01 = Y, (8- ;= ) B x+ 5K,

jel

Unlikely, but. ...
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Computing E [Qi(X, Y, 5)]

— Primal solution  Dual solution
Wilzl 7’-l:®:>‘/>i:0
Wi = 2 %1 = 8i1 ~ Ci
- Pip = 8 — Cip
Wiz = 2

Az = 83 — Cj3

3 Wi =3

= Wip =

- Wiz =
Wy =4

Scenario 3 Scenario 2 Scenario T
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Computing E [Qi(X, Y, 5)]

Let P = {& : 7Y(€) = k) be the set of scenarios where customer k is the critical
one. Then

. +
_[Ql(xayag)‘P]: — Z(gl]_cl]_‘}f) (i:]xl]_l_vazyllP
iel

_l_
:Z<8zj“‘zj“7f) B 1 P1-xy + 97 Ki-
icl
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Computing E [Qi(X, Y, 5)]

Let P = {& : 7Y(€) = k) be the set of scenarios where customer k is the critical

one. Then .
_[Ql(x,y,f)‘P]z - Z(glj—clj—9§> 'éj'xlj_l_‘/}f'Ki'yilP
jel
e\ T o
:Z<8zj“‘zj“’i) G 1P x4 V- K-y,

jel
And by the law of total probabilities, for any partition &2 of the probability space:

[Q/(x.y. 8] = ) E[Q(x.y,&) | P]- P[P]

Pesr

Hence, we can partition the probabllity space into at most 1 + # customers assigned
to the facility subsets.
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Example TO FIX

Two demands &; « exp(1/2) and
&, w exp(1/3).
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Example TO FIX /\

Two demands &; w exp(1/2) and

&, w exp(1/3). 5-
Capacity K! = 6

S,
Pl7' = k] 0.35 0.05 0.60 2

& |7i=k] 257 800 116 | -

C[& | T = k] 3.00 4.16 £,
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Benders formulation for general distributions.

Theorem: Given an incumbent solution (x™, y*), then

0" < DD (g — iy — (gik — c) T Eae [ | 7 = K] - Poe [ = K] - 2y

'S a Bender optimality cut for the master problem.
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Algorithm for general distributions

1) Solve mln nyl + Z Z 8iiliX;j z O.

el el jeJ el
Xj <Y Ax+By<h x,ye {01}

2) Given constructed facilities and assignment of customers, for each facility sort their assigned
customers by decreasing cost and construct the partition of scenarios for the different critical

customers 7.

3) Compute —[5]- |7t = k] and P[7! = k]

4) Add the violated Bender optimality cut to the main problem
0'< ) D (g == =) Elg | 7' =kl - Ple' = k] -,

kel jel +Z (g —¢;) - EIS; | =@ Pl = @] X+ Z (gp—cy) K -y - P[t' = k]
keJ

5) If no cut added, stop (optlma\ solution). In other case, go to (1).
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Computing [E[éj | 7! = k] and P[7' = k]

Bernoulli distribution with mean ;.

Palr' = k] = i - B[Sjers = Ko — 1
1 Tij =0
4 Tij =1, >k
1 Ti; =1,k =

{ [é} ‘ ’/i —k] K,—1
Mz
fj P[Zl‘jz‘lzlabéj i’“'f“Ki_l]

P[Zl::ﬁilzl '§Z<Ki]

in‘ij:1,j<k

@ijzl,]{?:@

where 7, Is the number of customers assigned to the tacility.
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Computing [E[éj | 7! = k] and P[7' = k]

Exponential distribution with parameter 1/u:
e~ il (K p)™

P [’/i = ]‘C] — F(n;?; T 1) — M- fGamma(na%-l-la M)(Kl)
y i =0
Lt Ti; =1,7 >k
cfe 17 =K = dnt iy dy=1k=
”ﬁﬁ[xmsm] % ] o ik
b gy, <Rk i = LE=9

where 71; is the number of customers assigned to the facility and X, is a r.v. with Gamma

distribution of parameters (75, pt)
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Small instance: Bienek with 1.1.d. Bernoulli demands

Using Bienek instances as Bernoulli 1.1.d. demands
(12 customers := 4096 scenarios)

Solving time (seconds)

'”S(‘;\?;‘)CG Det. Equiv A'?Iegg:r:_ Compact i.i.d. gggzg

1.5/1.0 21.87 163.23 0.01 0.04 Fven with a small
instance, using all

1.5/2.1 30.07 119.68 0.02 0.02 scenarios in a DE

formulation IS t00
1.5/3.0 29.82 51.03 0.0 0.01 costly.




Small instance: Bienek with i.i.d. Exponential demands
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Solving time (seconds)

SAA*
(Mean time)

General
Bender

Instance Compact
(A7) i.i.d.
0.5/1.0 0.02
0.5/2.1 0.04
0.5/3.0 0.01
1.0/1.0 0.02
1.0/2.1 0.01
1.0/3.0 0.02
1.5/1.0 0.01
1.5/2.1 0.02
1.5/3.0 0.03

2.23
0.15
0.09
0.55
0.09
0.03
0.12
0.13
0.00

1.47
0.27
0.09
0.33
0.15
0.14
0.12
0.09
0.12

Exp 11.5 g3.0 -
Exp 1.5 g2.1 -
Exp 11.5g1.0-
o Exp11.0g3.0-
O
S Exp 1.0 g2.1-

n

£ Expl1.0g1.0-
Exp 10.5 g3.0 -
Exp 10.5 g2.1 -

Exp 10.5g1.0-

I

I

;IE ole)

—I1—-eo o o] o

I

_ O 0o

j Method
—ll—l . GSB
o -a» o eo®o SAA
: =
| l

o

— T 1 oo o

I
0% 2% 4% 6%

True Gap

(*) Average time over 100 repetitions with 100 scenarios

Similar times, but iIn most of the
cases SAA does not obtain the
optimal solution.




Google Research

Large Instances: Albareda-Sambola et al (2011) with 1.i.d. demands

bernoulli_iid exponential_iid
100% -
90% -
80% -
S 70%.-
O Method
(v} 60% -
17 e CompactSl|
S 50%-
() - (GeneralBender
= 40%-
S —— SAA_multi_100
o 30%-
20% -
10% -
0% -
0% 4% 8% 12% 0% 10% 20% 30%
True Gap obtained (timelimit: 1 hr) Compact formulation solves

all problems in <5 minutes
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Large Instances: Albareda-Sambola et al (2011) with 1.i.d. demands

bernoulli_iid(p=0.1) bernoulli_iid(p=0.5) bernoulli_iid(p=0.9)
10.0% -
12% - L ¢ °
s 4% -
° s ° o ° .
7.5%4 | ® - °* § o o ® o
8% - ¢ bl S : 0 ) ® ¢ . ° ® 3% - ® o o O
O L o o 0
o o o (8 * o
8| 50%- 0 ,
° 2% - e
4% - ‘ ) ' ® o ; o |,
I - N I l x ‘ * ‘
o
O%-J- -1 ML AL S A = L 0.0% <= = -’ -o ------- 0% o == —i—‘ —————— -2 ..
Q- 1 ) bl 0l Ql 1 Ql Ql bl 0l b 0 Q Q Ql bl I 0l 1 I bl Ql Ql I Ql Ql bl I 0l MethOd
N Q %) 0 %) N Q %)
© (ioq’o\{oe}(\ Q7,070,800 A '239 é(\ gaq’@% ’\ O ,07,07,0 .0 A '239 é(\ ,gaq’é}{oé}(\ O,07,07.,0,.0" A '239 é(\ - Compactsl|
S & XL &K €< S o‘?“o@oOoQQ’Q“ N FXLLE T P
o ¢ $EE ¢ N2 NSRS IS N7 NOERSERSEET
S . GeneralBender
= exponential_iid(p=0.1 tial_iid(p=0.5 tial_iid(p=0.9
— p _iid(p ) o exponential_iid(p ) exponential_iid(p ) - SAA multi 100
5% - ® 25% - ® ®

. : .:I : “' outperforms SAA for low/

ol e . et i . - General Bender

.S ..’g’; :'.;. - o .é |
HIEEE high dd ds.
i IR iy Do oveed s

O © O O O o N D O O O O O O N D O O O O
é,gz/\ \Q RORORORS /\"0 @é(\ e LCELELS '\Q’é\ A G LCEESS ,\00 '\Q’,\cbc,)(\0
Nl o‘?oQ’oOoOQ’Q‘ Foopreoos L Fooproooe @ ~
& CEEEE & L E @K & EEECEE ;
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Albareda-Sambola et al (2017) with non-i.i.d. Bernoulli demands

Relative difference w.r.t. Best Sol. Found

8% -

6% -

4% -

2% -

0% -

Method

. GeneralBender
' SAA_multi_100




