Stochastic facility location problems with outsourcing costs

Eduardo Moreno (Google Research, France) Ivana Ljubić (ESSEC Business School of Paris, France) Javiera Barrera (Universidad Adolfo Ibáñez, Chile)

Problem definition: a two-stage stochastic problem

- First stage: an "assignment" problem.
 - Facility location: Customers assigned to open facilities
 - Generalized Assignment: Tasks assigned to agents
 - Vehicle Routing: Customers assigned to vehicles
- **Second stage:** an stochastic demand to be served with outsourcing/penalty.
 - Customer/task demands are served by the assigned facility/agent/vehicle minimizing • cost.
 - If the total demand is higher than the capacity, the unserved demands is outsourced / penalized at a higher cost.
- **Objective:** Minimize the assignment cost + expected value of serving demand. **This talk:** Solve the problem for general probability distributions (not scenarios)
- •

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i

Google Research

 X_{ij} y_i

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open ($y_i = 1$) and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open ($y_i = 1$) and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i

Capacitated Facility Location with Outsourcing

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij} + g_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i allowing to outsource some demand (at a higher cost).

Capacitated Facility Location with Outsourcing

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij} + g_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq d_{j} \cdot$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with demand d_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities ($x_{ii} = 1$) to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i allowing to outsource some demand (at a higher cost).

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} c_{ij}w_{ij} + g_{ij}$$

$$x_{ij} \leq y_{i} \qquad 0 \leq w_{ij} \leq \xi_{j} \cdot .$$

$$(x, y) \in \mathcal{X} \qquad \sum_{j} w_{ij} \leq K_{i} \cdot .$$

$$x, y \in \{0, 1\} \qquad j$$

Given a set of customers J with random demand ξ_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities $(x_{ii} = 1)$ to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i allowing to outsource some demand (at a higher cost).

$$\begin{split} & E \begin{bmatrix} \min \sum_{i} f_{i} y_{i} + \sum_{i} \sum_{j} c_{ij} w_{ij} + g_{ij} \\ x_{ij} \leq y_{i} \\ (x, y) \in \mathcal{X} \\ x, y \in \{0, 1\} \\ \end{split}$$

Given a set of customers J with random demand ξ_i and a set of potential facilities I

to decide a subset of facilities to open $(y_i = 1)$ and an assignment of customers to facilities $(x_{ii} = 1)$ to fulfill the demand of clients ($w_{ij} \in [0, d_j]$) minimizing the installment and assignment cost. while satisfying the capacity of the facility K_i allowing to outsource some demand (at a higher cost).

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} \mathbb{E} \begin{bmatrix} c_{ij}w_{ij} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{ij} \leq \xi_{j} \cdot x_{ij} \leq x_{i} \cdot y_{ij} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \leq x_{i} \cdot y_{i} \in x_{i}$$

We assume a two-stage stochastic problem:

 1st stage decision (here-and-now): to open facilities and assign customers to them.

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} \mathbb{E} \begin{bmatrix} c_{ij}w_{ij} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{ij} \leq \xi_{j} \cdot x_{ij} \leq x_{i} \cdot y_{ij} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \in$$

We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to open facilities and assign customers to them.
- 2nd stage decision (wait-and-see): to route and/or outsource the random demand.

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} \mathbb{E} \begin{bmatrix} c_{ij}w_{ij} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \left(\xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{i} + g_{ij} \leq \xi_{j} \cdot x_{ij} \leq y_{ij} \leq \xi_{j} \cdot x_{ij} \leq x_{i} \cdot y_{ij} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \leq x_{i} \cdot y_{i} \in x_{i} \cdot y_{i} \in$$

We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to open facilities and assign customers to them.
- 2nd stage decision (wait-and-see): to route and/or outsource the random demand.

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} \mu_{j}g_{ij}x_{ij} - \sum_{i} x_{ij} \leq y_{i}$$
$$(x, y) \in \mathcal{X}$$
$$x, y \in \{0, 1\}$$

We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to open facilities and assign customers to them.
- 2nd stage decision (wait-and-see): to route and/or outsource the random demand.

 $\sum_{i} \mathbb{E} \sum_{j} (g_{ij} - c_{ij}) w_{ij}$ $0 \le w_{ij} \le \xi_j \cdot x_{ij}$ $\sum w_{ij} \le K_i \cdot y_i$

$$\min \sum_{i} f_{i}y_{i} + \sum_{i} \sum_{j} \mu_{j}g_{ij}x_{ij} - \sum_{i} x_{ij} \le y_{i}$$

(x, y) $\in \mathcal{X}$
x, y $\in \{0,1\}$ First-stage prob

We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to open facilities and assign customers to them.
- 2nd stage decision (wait-and-see): to route and/or outsource the random demand.

$\mathbb{E}[Q^{i}(x, y, \xi)]$

$Q^{i}(x, y, \xi) = \max_{w \ge 0} \sum_{j} (g_{ij} - c_{ij}) w_{ij}$ $w_{ij} \le \xi_{j} \cdot x_{ij}$ lem $\sum w_{ij} \le K_i \cdot y_i$

Second-stage problem (independent for each facility)

Second-stage problem : Knapsack problem

$$Q^{i}(x, y, \xi) = \max_{w \ge 0} \sum_{j} (g_{ij} - c_{ij}) w_{ij}$$
$$w_{ij} \le \xi_{j} \cdot x_{ij}$$
$$\sum_{j} w_{ij} \le K_{i} \cdot y_{i}$$

Optimal solution: to allocate the demand in decreasing order of profit $g_{ij} - c_{ij}$ until the capacity of the facility is fulfilled.

$$w_{ij} = \begin{cases} \xi_j x_{ij} & j < \tau^i \\ K_i y_i - \sum_{l < \tau^i} x_{il} \xi_l & j = \tau^i \\ 0 & j > \tau^i \end{cases}$$

Stochastic facility location problems with outsourcing costs

1. Bender formulation for a <u>discrete set of scenarios</u> (for example, a sample average approximation of the demand distributions)

- 2. Bender formulation for general distributions.
- 3. Computational experiments

Primal formulation:

$$Q^i(x, y, \xi) = \max_{w \ge 1}$$

The dual of the subproblem is given by

$$\hat{Q}^{i}(x, y, \xi) := \min_{\alpha, \gamma} \sum_{j \in J} \alpha_{ij} \xi_{j} x_{i}$$
$$\alpha_{ij} + \gamma$$

Google Research

 $\max_{w \ge 0} \sum_{j} (g_{ij} - c_{ij}) w_{ij}$ $w_{ij} \le \xi_j \cdot x_{ij} \qquad \forall j \in J$ $\sum w_{ij} \le K_i \cdot y_i$

 $_{ij} + \gamma_i K_i y_i$

 $\forall j \in J$ $\gamma_i \ge g_{ij} - c_{ij}$ $\forall j \in J$ $\alpha_{ij}, \gamma_i \ge 0$

The dual of the subproblem is given by

$$\hat{Q}^{i}(x, y, \xi) := \min_{\alpha, \gamma} \sum_{j \in J} \alpha_{ij} \xi_{j} x_{ij} + \gamma$$

 $\alpha_{ij}, \gamma_i \ge 0$ and its solution is given by

$$\gamma_i = \begin{cases} \hat{v}_i^{\xi} & y_i^* > 0\\ 0 & y_i^* = 0 \end{cases} \qquad \alpha_{ij} = (g_{ij} - c_{ij})$$

and \hat{v}_i^{ξ} is the cost of the critical customer τ^i where the capacity of the facility is fulfilled (or zero if not).

Hence:
$$\hat{Q}^i(x, y, \xi) = \sum_{j \in J} \left(g_{ij} - c_{ij} - \hat{v}_i^{\xi} \right)^+ \cdot \xi_j \cdot x_{ij} + \hat{v}_i^{\xi} \cdot K_i \cdot y_i$$

Google Research

$V_i K_i y_i$

 $\forall j \in J$ $\alpha_{ij} + \gamma_i \ge g_{ij} - c_{ij}$ $\forall j \in J$

 $(i_j - \hat{v}_i^{\xi})^+ \quad \forall j \in J$

The dual of the subproblem is given by

$$\hat{Q}^{i}(x, y, \xi) := \min_{\alpha, \gamma} \sum_{j \in J} \alpha_{ij} \xi_{j} x_{ij} + \gamma$$

 $\alpha_{ij} + \gamma_i \ge g_{ij} - c_{ij}$ $\alpha_{ij}, \gamma_i \ge 0$ and its solution is given by

$$\gamma_i = \begin{cases} \hat{v}_i^{\xi} & y_i^* > 0\\ 0 & y_i^* = 0 \end{cases} \qquad \alpha_{ij} = (g_{ij} - c_{ij})$$

and \hat{v}_i^{ς} is the cost of the critical customer τ^i where the capacity of the facility is fulfilled (or zero if not).

Hence:
$$\hat{Q}^i(x, y, \xi) = \sum_{j \in J} \left(g_{ij} - c_{ij} - \hat{v}_i^{\xi} \right)^+ \cdot \xi_j \cdot x_{ij} + \hat{v}_i^{\xi} \cdot K_i \cdot y_i$$

Google Research

Primal solution $w_{i1} = 1$ $w_{i2} = 2$ $w_{i3} = 2$

$$Dual solution$$

$$\tau^{i} = \emptyset \Rightarrow \hat{v}_{i} = 0$$

$$\alpha_{i1} = g_{i1} - c_{i1}$$

$$\alpha_{i2} = g_{i2} - c_{i2}$$

$$\alpha_{i3} = g_{i3} - c_{i3}$$

Google Research

Primal solution $w_{i1} = 1$ $w_{i2} = 2$ $w_{i3} = 2$ $w_{i1} = 3$ $w_{i2} = 3$ $w_{i3} = 0$

Dual solution $\tau^i = \emptyset \Rightarrow \hat{v}_i = 0$ $\alpha_{i1} = g_{i1} - c_{i1}$ $\alpha_{i2} = g_{i2} - c_{i2}$ $\alpha_{i3} = g_{i3} - c_{i3}$ $\tau^i = 2 \Rightarrow \hat{v}_i = g_{i2} - c_{i2}$ $\alpha_{i1} = g_{i1} - c_{i1} - \hat{v}_i$ $\alpha_{i2} = 0$ $\alpha_{i3} = 0$

Google Research

Primal solution	Dual s
$w_{i1} = 1$	$\tau^i = \emptyset \Rightarrow$
$w_{i2} = 2$	$\alpha_{i1} = g_{i1} -$
$w_{i3} = 2$	$\alpha_{i2} = g_{i2} -$
vi3 — 2	$\alpha_{i3} = g_{i3} -$
$w_{i1} = 3$	$\tau^i = 2 \Rightarrow i$
	$\alpha_{i1} = g_{i1} -$
$w_{i2} = 3$	$\alpha_{i2} = 0$
$w_{i3} = 0$	$\alpha_{i3} = 0$
$w_{i1} = 4$	$\tau^i = 2 \Rightarrow$
$w_{i2} = 2$	$\alpha_{i1} = g_{i1}$
$w_{i3} = 0$	$\alpha_{i2} = 0$
13	$\alpha_{i3} = 0$

<u>solution</u> $\hat{v}_i = 0$ $-c_{i1}$ $-c_{i2}$ $-c_{i3}$ $\hat{v}_i = g_{i2} - c_{i2}$ $-c_{i1}-\hat{v}_i$ $\hat{v}_i = g_{i2} - c_{i2}$ $-c_{i1}-\hat{v}_i$ l

Benders formulation for a discrete set of scenarios

 $\min_{x,y} \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_i$ $(x, y) \in \mathcal{X}$ $\theta_s^i \leq \hat{Q}^i(x, y, \xi^s)$

$$\hat{Q}^i(x, y, \xi^s) \le \sum_{j \in J} \left(g_{ij} - c_{ij} - \hat{v}_i^{\xi} \right)^+ \cdot \xi_j \cdot x_{ij}^* + \hat{v}_i^{\xi} \cdot K_i \cdot y_i^*$$

for any feasible dual solution

Google Research

Given a discrete set of scenarios $s \in S$ with probability p_s , we can reformulate

$$\begin{aligned} x_{ij}\mu_j x_{ij} - \sum_{i \in I} \sum_{s \in S} p_s \theta_s^i \\ x, y \in \{0, 1\} \\ \forall i \in I, s \in S \end{aligned}$$

Benders formulation for a discrete set of scenarios

$$\begin{split} \min_{x,y} \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu_j x_{ij} - \sum_{i \in I} \sum_{s \in S} p_s \theta_s^i \\ (x,y) \in \mathcal{X} \qquad x,y \in \{0,1\} \\ \theta_s^i \leq \hat{Q}^i(x,y,\xi^s) \qquad \forall i \in I, s \in S \end{split}$$

incumbent solution (x^*, y^*)

$$\theta_s^i \le \sum_{j \in J} \left(g_{ij} - c_{ij} - \hat{v}_i^{\xi} \right)^+ \cdot \xi_j \cdot x_{ij}^* + \hat{v}_i^{\xi} \cdot K_i \cdot y_i^*$$

Google Research

Given a discrete set of scenarios $s \in S$ with probability p_s , we can reformulate

We can be solve it by iteratively adding Benders optimality cuts for the given

Stochastic facility location problems with outsourcing costs

average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Computational experiments

1. Bender formulation for a discrete set of scenarios (for example, a sample)

Computing $\mathbb{E}\left[Q^{i}(x, y, \xi)\right]$

Primal solution	Dual solution
$w_{i1} = 1$	$\tau^i = \varnothing \Rightarrow \hat{v}_i = 0$
$w_{i2} = 2$	$\alpha_{i1} = g_{i1} - c_{i1}$
$w_{i3} = 2$	$\alpha_{i2} = g_{i2} - c_{i2}$
<i>wi3 – 2</i>	$\alpha_{i3} = g_{i3} - c_{i3}$
$w_{i1} = 3$ $w_{i2} = 3$ $w_{i3} = 0$	$\tau^{i} = 2 \Rightarrow \hat{v}_{i} = g_{i2} - c_{i2}$ $\alpha_{i1} = g_{i1} - c_{i1} - \hat{v}_{i}$ $\alpha_{i2} = 0$ $\alpha_{i3} = 0$
$w_{i1} = 4$ $w_{i2} = 2$ $w_{i3} = 0$	$\tau^{i} = 2 \Rightarrow \hat{v}_{i} = g_{i2} - c_{i2}$ $\alpha_{i1} = g_{i1} - c_{i1} - \hat{v}_{i}$ $\alpha_{i2} = 0$ $\alpha_{i3} = 0$

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left(g_{ij} - c_{ij}\right) \cdot \mathbb{E}\left[w_{ij}^{\xi}\right]$$

Let $S_i^l(x,\xi)$ be the aggregated demand of the best *j* customers assigned to *i*: $S_j^i(x,\xi) = \sum \xi_l x_{il}$

Google Research

ξ₅

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left(g_{ij} - c_{ij}\right) \cdot \mathbb{E}\left[w_{ij}^{\xi}\right]$$

Let $S_i^l(x,\xi)$ be the aggregated demand of the best *j* customers assigned to *i*: $S_i^i(x, \xi) = \sum \xi_l x_{il}$

 $w_{ii}^{\xi} = \min\{S_{i}^{i}(x,\xi), K_{i}\} - \min\{S_{i-1}^{i}(x,\xi), K_{i}\}\}$

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left(\left(g_{ij} - c_{ij}\right) - \left(g_{i,j+1} - c_{i,j+1}\right)\right) \cdot \mathbb{E}\left[\min\{S_{j}^{i}(x, \xi), K_{i}\}\right]$$

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left(g_{ij} - c_{ij}\right) \cdot \mathbb{E}\left[w_{ij}^{\xi}\right]$$

Let $S_i^l(x,\xi)$ be the aggregated demand of the best *j* customers assigned to *i*: $S_i^i(x,\xi) = \sum \xi_l x_{il}$

 $w_{ii}^{\xi} = \min\{S_i^i(x,\xi), K_i\} - \min\{S_{i-1}^i(x,\xi), K_i\}$

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left((g_{ij} - c_{ij}) - (g_{i,j+1} - g_{i,j+1})\right)$$

 $-c_{i,j+1})) \cdot \mathbb{E}\left[\min\{S_j^i(x,\xi),K_i\}\right]$

For a fixed x we can obtain closed formulas for many demand distributions:

- Bernoulli distribution with mean μ_i :
- Poisson distribution with mean μ_i : $\mathbb{E}[\min\{S_i(x,\xi),K_i\}] = K_i \cdot (1 - f_{Poisson(k)})$
- Exponential distribution with mean μ : $\mathbb{E}[\min\{S_{i}(x,\xi),K_{i}\}] = j \cdot \mu \cdot F_{Gamma}$

Google Research

$$\mathbb{E}[w_{ij}^{\xi}] = \mu_j \cdot F_{S_{j-1}}(K_i - 1)$$

$$(\mu_{S_{j}(x,\xi)})(K_{i})) + (\mu_{S_{j}(x,\xi)} - K_{i}) \cdot F_{Poisson(\mu_{S_{j}(x,\xi)})}(K_{i} - K_{i}))$$

$$_{k(j+1,1/\mu)}(K_i) + K_i \left(1 - F_{Gamma(j,1/\mu)}(K_i)\right)$$

-1)

Key idea: How to compute $\mathbb{E}\left[\min\{S_{i}^{i}(x,\xi),K_{i}\}\right]$

By the law of total probabilities:

Google Research

$\mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\right] = \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)\leq K_{i}}\right] + \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)>K_{i}}\right]$

Key idea: How to compute $\mathbb{E}\left[\min\{S_{i}^{i}(x,\xi),K_{i}\}\right]$

By the law of total probabilities:

$$S_j^i(x,\xi) = \sum_{l \le j} \xi_l x_{il}$$

Google Research

$\mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\right| = \mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)\leq K_{i}}\right| + \mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)>K_{i}}\right|$ $= \mathbb{E} \left[S_j^i(x,\xi) \cdot 1_{S_j^i(x,\xi) \le K_i} \right] + \mathbb{E} \left[K_i \cdot 1_{S_j^i(x,\xi) > K_i} \right]$

Key idea: How to compute $\mathbb{E}\left[\min\{S_{i}^{i}(x,\xi),K_{i}\}\right]$

By the law of total probabilities:

$$S_j^i(x,\xi) = \sum_{l \le j} \xi_l x_{il}$$

Google Research

 $\mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\right| = \mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)\leq K_{i}}\right| + \mathbb{E}\left|\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)>K_{i}}\right|$ $= \mathbb{E} \left| S_j^i(x,\xi) \cdot 1_{S_j^i(x,\xi) \le K_i} \right| + \mathbb{E} \left| K_i \cdot 1_{S_j^i(x,\xi) > K_i} \right|$ $= \sum \mathbb{E} \left| \xi_l \cdot 1_{S_j^i(x,\xi) \le K_i} \right| \cdot x_{il} + K_i \cdot \mathbb{P} \left| S_j^i(x,\xi) > K_i \right|$

Key idea: How to compute $\mathbb{E}\left[\min\{S_{i}^{i}(x,\xi),K_{i}\}\right]$

By the law of total probabilities:

 $S_i^i(x,\xi) = \sum \xi_l x_{il}$

 $l \leq j$

Non-linear function because coefficients also depends on x

Google Research

 $\mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\right] = \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x,\xi)\leq K_{i}}\right] + \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{i}^{i}(x,\xi)>K_{i}}\right]$ $= \mathbb{E} \left| S_j^i(x,\xi) \cdot 1_{S_j^i(x,\xi) \le K_i} \right| + \mathbb{E} \left| K_i \cdot 1_{S_j^i(x,\xi) > K_i} \right|$ $= \sum_{i \in I} \mathbb{E} \left[\xi_l \cdot 1_{S_j^i(x,\xi) \le K_i} \right] \cdot x_{il} + K_i \cdot \mathbb{P} \left[S_j^i(x,\xi) > K_i \right]$

Key idea: How to compute $\mathbb{E}\left[\min\{S_{i}^{i}(x,\xi),K_{i}\}\right]$

But we can use another first-stage assignment x' too

 $\mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\right] = \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x',\xi)\leq K_{i}}\right] + \mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\cdot 1_{S_{j}^{i}(x',\xi)>K_{i}}\right]$ $\leq \mathbb{E} \left| S_j^i(x,\xi) \cdot 1_{S_j^i(x',\xi) \leq K_i} \right| + \mathbb{E} \left| K_i \cdot 1_{S_j^i(x',\xi) > K_i} \right|$ $= \sum \mathbb{E} \left| \xi_l \cdot 1_{S_j^i(\boldsymbol{x}', \boldsymbol{\xi}) \leq K_i} \right| \cdot x_{il} + K_i \cdot \mathbb{P} \left| S_j^i(\boldsymbol{x}', \boldsymbol{\xi}) > K_i \right|$

 $S_j^i(x,\xi) = \sum_{l=1}^{\infty} \xi_l x_{il}$ $l \leq j$

Google Research

Linear upper bound for a fixed x'

Key idea: How to compute $\mathbb{E}\left[\min\{S_j^i(x,\xi), K_i\}\right]$

Lemma:
$$\mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\right]$$
 is a concave function at x and $h_{j}^{i}(x,x') := \sum_{l \leq j} \mathbb{E}\left[\xi_{l} \cdot 1_{S_{j}^{i}(x',\xi) \leq K_{i}}\right] \cdot x_{il} + K_{i} \cdot \mathbb{P}\left[S_{j}^{i}(x',\xi) > K_{i}\right]$

is in its subdifferential at x'

Google Research

Example:

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3)$ with K=3

 $h_i^i(x, x')$ at x' = (0, 1)

Benders formulation for general distributions

$$\begin{split} \min_{x,y,z} \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu_j x_{ij} - \sum_{i \in I} \sum_{j \in J} (c_{i,\sigma^i(j)} - c_{i,\sigma^i(j+1)}) z_{ij} \\ (x,y) \in \mathcal{X} \qquad \qquad x,y \in \{0,1\} \end{split}$$

given incumbent solution (x^*, y^*)

$$z_{ij} \leq \sum_{l \leq j} \mathbb{E} \left[\xi_l \cdot \mathbf{1}_{S_j^i(x',\xi) \leq K_i y_i'} \right] \cdot x_{il} + K_i \cdot y_i \cdot \mathbb{P} \left[S_j^i(x',\xi) > K_i y_i' \right]$$

Google Research

We add a variable $z_{ij} \ge 0$ which correspond to the value of $\mathbb{E}\left[\min\{S_j^i(x,\xi), K_i\}\right]$

It can be solve by iteratively adding Generalized Benders optimality cuts for the

- 1) Submodularity of $\mathbb{E}\left[\min\{S_{j}^{i}(x,\xi),K_{i}\}\right]$. A set-valued function is sub modular if it has "diminishing returns".
- a given x, y, ξ .
- modular for a given x, y.

• Lemma: Set-valued function $\mu(A) := \min\{S_i(1_A, \xi), K_i y_i\}$ is submodular for

. Corollary: Set-valued function $\mu'(A) := \mathbb{E}\left[\min\{S_j(1_A, \xi), K_i y_i\}\right]$ is sub-

Since $\mathbb{E}\left[\min\{S_j^i(x,\xi),K_i\}\right]$ is submodular, we can add submodular cuts (*)

(*) see Nemhauser & Wolsey (1981), Ljubic & M. (2018)

$$\sum_{l:x_{il}'=0} \mathbb{E}[\xi_l 1_{S_j(x')+\xi_l \le K_i} + (K_i - S_j(x')) 1_{S_j(x') \le K_i < S_j(x')+\xi_l}] \cdot x_{il}$$

-
$$\sum_{l:\xi_l} \mathbb{E}[\xi_l 1_{S_j \le K_i} + (K_i - (S_j - \xi_l)) 1_{S_j - \xi_l \le K_i < S_j}] \cdot (1 - x_{il})$$

Example:

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3)$ with K=3

Submodular cut at x' = (0,1)

2) Valid constraints on z_{ii} variables.

 $z_{ij} \leq \sum \mathbb{E}[\xi_l] x_{il}$ $l \in J: \sigma^i(l) \leq \sigma^i(j)$ $z_{ii} \leq K_i y_i$ $z_{i,i-1} \leq z_{ii}$ $z_{ij} \leq z_{i,j-1} + \mathbb{E}[\xi_j] x_{ij}$

 $\left(z_{ij} \approx \mathbb{E}\left[\min\{S_j^i(x,\xi),K_i\}\right]\right)$

problem?

If $\sum_{l \in J: \sigma^i(l) < \sigma^i(j)} x_{ij} = \kappa \in \mathbb{N}$, we can consider to sum the κ "worst" customers.

Proposition: Assume that random demands can be ordered in the usual stochastic order $\xi_{(1)} \geq_{st} \xi_{(2)} \geq_{st} \dots \xi_{(j)}$. Then $\mathbb{E}\left[\min\{S_j(x), K_i y_i\}\right] \leq$

3) Both Bender and submodular cuts requires an integer solution x' to compute the coefficients to generate a cut. Can we create cuts for the relaxation of the

$$\mathbb{E}\left[\min\left\{\sum_{l=1}^{\kappa}\xi_{(l)}, K_{i}y_{i}\right\}\right]$$

customer. We can extend this function using a piece-wise linear function, creating the valid upper bound:

$$z_{ij} \le B_{ij}(\kappa) + (B_{ij}(\kappa+1) - B_{ij}(\kappa)) \cdot \left| l \in J \right|$$

- For i.i.d. demand distributions, \mathcal{S}_{κ} is the sum of *k* random variables. The bound is tight.
- For single-parameter distribution (e.g. exponential or Poisson) the κ worst customers are the one with higher expected demand. The bound is not tight.

Google Research

Let $B_{ij}(\kappa) := \mathbb{E}[\min\{\mathcal{S}_{\kappa}, K_i y_i\}]$ the expected value considering the "worst" κ

Stochastic facility location problems with outsourcing costs

- average approximation of the demand distributions)
- 2. Bender formulation for general distributions.
- **3. Computational experiments**

1. Bender formulation for a discrete set of scenarios (for example, a sample)

Computational experiments

Dataset for benchmarking:

- 15 facilities and 30 customers.
- value 0.1, 0.5 or 0.9.
- each z_{ii}) or a single-cut (aggregated cut for each facility).
- Coded in C++ using Gurobi as solver.

Albareda-Sambola et al (2011). 297 instances based on TSP problems, with

Random demands with Bernoulli and Exponential distributions with mean

Comparison of Benders, Submodular and PWL cuts using multi-cut (one cut for

Performance profile for i.i.d. demands

True Gap obtained (timelimit: 1 hr)

- Adding PWL cuts solved all problems in a few seconds

Google Research

- 50%/40% of instances are solved up to optimality. ~80% with <5% gap.

Performance profile for i.i.d. demands

Google Research

Hulti cut Single cut Algorithm 🚔 GB+SM

Performance profile for non-i.i.d. demands

Best Gap obtained (timelimit: 1 hr)

- Too many cuts. Aggregating cuts performs better.
- Still > 90% of instances solved with <5% gap.

Google Research

- PWL cuts are not longer efficient. Submodular cuts improve the performance

Comparison with sample average approximation

- Generalized Bender outperforms SAA, particularly for smaller gaps.

Google Research

Best Gap obtained (timelimit: 1 hr)

- SAA with 10 scenarios is solved up to optimality, but solution quality is very bad. - Adding more scenarios improves the quality but became harder to solve.

Conclusions

- Benders methodology for two-stage assignment problem where the second • stage is a stochastic knapsack problem
 - An exact solution to the problem is achievable, precluding the necessity for scenario sampling.
 - We can exploit the structure of the subproblem: small number of optimal dual solutions where we can compute the expectations by conditioning.
 - Not an approximation! Provide true bounds for the problem.
 - Similar ideas can be extended to other problems.
 - See also Benders Adaptive Partition cuts (Ramirez-Pico & M., Math Prog 2022, Ramirez-Pico, Ljubic, M., Transp Sci 2023).

Compact formulation for i.i.d. distributions

- Case: customer demands are i.i.d.: cumulative demand S_l of the l best customers doesn't depend on which customer are the best.
- Let $C_{il} := \mathbb{E} \left| \max \left\{ S_l, K_i \right\} \right| \mathbb{E} \left| \max \left\{ S_{l-1}, K_i \right\} \right|$ (Can be precomputed using previous formulas) then $\mathbb{E}[Q^i(x, y, \xi)] = \sum (g_{ij} - c_{ij}) \cdot C_{i, r_{\hat{x}}^i(j)} \cdot x_{ij}$
 - j∈J

where $r_{x}^{l}(j)$ is then is the *ranking* of customer j among the customers assigned to facility *i* in decreasing order of $(g_{ii} - c_{ii})$

Compact formulation for i.i.d. distributions

New variable: $z_{iil} \in \{0,1\}$ if customer j is the l-best customer assigned to i

$$\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu x_{ij} - \sum_{i \in I} \sum_{j \in J} (g_{ij} - c) \sum_{i \in I} x_{ij} = 1 \qquad x_{ij} \leq y_i \qquad Ax + c$$

$$x_{ij} = \sum_{l=1}^{|J|} z_{ijl}$$

$$\sum_{j \in J} z_{ijl} \le y_i$$

$$\sum_{l=1}^{|J|} (l-1) \cdot z_{ijl} \leq \sum_{k:g_{ik}-c_{ik}>g_{ij}-c_{ij}} \sum_{k:g_{ik}-c_{ik}>g_{ij}-c_{ij}} z_{ij}$$

Google Research

 $\mathcal{C}_{ij}) \cdot \mathcal{C}_{il} \cdot z_{ijl}$

 $+By \leq h$

Constraints from main problem

If assigned then it must have a ranking position

At most 1 customer on each ranking position

 x_{ik}

If $z_{ijl} = 1$ then at least l - 1 other customers with higher profit must be assigned to i

Expected value of the second-stage problem

$$\mathbb{E}\left[Q^{i}(x, y, \xi)\right] = \sum_{j \in J} \left(g_{ij} - c_{ij}\right) \cdot \mathbb{E}\left[w_{ij}^{\xi}\right]$$

Let $S_i^l(x,\xi)$ be the aggregated demand of the best *j* customers assigned to *i*: $S_i^i(x, \xi) = \sum \xi_l x_{il}$

Then: $\mathbb{E}\left[w_{ij}^{\xi}\right] := \mathbb{E}\left[\xi_{j} \cdot 1_{S_{j}^{i}(x,\xi) \leq K_{i}}\right] + \mathbb{E}\left[\left(f_{j}^{i}\right) + \mathbb{E}\left[\xi_{j}^{i}\right] + \mathbb{E}\left[\left(f_{j}^{i}\right) + \mathbb{E}\left[f_{j}^{i}\right] + \mathbb{E}\left[f_{j}^{i}\right]\right]\right] + \mathbb{E}\left[f_{j}^{i}\right] + \mathbb{E}\left[f_{$

Google Research

$$\left(K_{i}-S_{j-1}^{i}(x,\xi)\right) \cdot 1_{S_{j}^{i}(x,\xi)>K_{i}}$$

ξ₅

Benders formulation for general distributions.

- Previous formulation only applies to a finite set of scenarios (for example, a Bernoulli distribution, or sampled scenarios from the original distribution).
- But we can explote the structure of the dual subproblem to solve this problem for general distributions.

$$\begin{split} \min_{x,y} \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu_j x_{ij} - \sum_{i \in I} \Theta_i \\ x_{ij} \leq y_i \qquad Ax + By \leq h \qquad x, y \in \{0,1\} \\ \Theta_i \leq \mathbb{E} \left[Q^i(x,y,\xi) \right] \end{split}$$

We know how to solve the dual subproblem for a given scenario

$$Q^{i}(x, y, \xi) = \sum_{j \in J} \left(g_{ij} - c_{ij} - \hat{v}_{i}^{\xi} \right)^{+} \cdot \xi_{j} \cdot x_{ij} + \hat{v}_{i}^{\xi} \cdot K_{i} \cdot y_{i}$$

but we need to compute their expected value over all scenarios.

In the (unlikely!) case that the dual solution \hat{v}_i^{ξ} is the same for all scenarios, then $(-\hat{v}_i^{\xi})^+ \cdot \mathbb{E}[\xi_j] \cdot x_{ij} + \hat{v}_i^{\xi} \cdot K_i \cdot y_i$

$$\mathbb{E}[Q^{i}(x, y, \xi)] = \sum_{j \in J} \left(g_{ij} - c_{ij}\right)$$

Unlikely, but....

Primal solution	Dual solution
$w_{i1} = 1$	$\tau^i = \varnothing \Rightarrow \hat{v}_i = 0$
$w_{i2} = 2$	$\alpha_{i1} = g_{i1} - c_{i1}$
$w_{i3} = 2$	$\alpha_{i2} = g_{i2} - c_{i2}$
<i>wi3 – 2</i>	$\alpha_{i3} = g_{i3} - c_{i3}$
$w_{i1} = 3$ $w_{i2} = 3$ $w_{i3} = 0$	$\tau^{i} = 2 \Rightarrow \hat{v}_{i} = g_{i2} - c_{i2}$ $\alpha_{i1} = g_{i1} - c_{i1} - \hat{v}_{i}$ $\alpha_{i2} = 0$ $\alpha_{i3} = 0$
$w_{i1} = 4$ $w_{i2} = 2$ $w_{i3} = 0$	$\tau^{i} = 2 \Rightarrow \hat{v}_{i} = g_{i2} - c_{i2}$ $\alpha_{i1} = g_{i1} - c_{i1} - \hat{v}_{i}$ $\alpha_{i2} = 0$ $\alpha_{i3} = 0$

Let $P = \{\xi : \tau^i(\xi) = k\}$ be the set of scenarios where customer k is the critical one. Then $\mathbb{E}[Q^{i}(x, y, \xi) \mid P] = \mathbb{E}\left[\sum_{j \in J} \left(g_{ij}\right)\right]$ $= \sum_{j \in J} \left(g_{ij} - c_{i} \right)$

$$\sum_{ij} - c_{ij} - \hat{v}_{i}^{\xi} + \hat{\xi}_{j} \cdot x_{ij} + \hat{v}_{i}^{\xi} \cdot K_{i} \cdot y_{i} \mid P$$

$$c_{ij} - \hat{v}_{i}^{\xi} + \mathbb{E}[\xi_{j} \mid P] \cdot x_{ij} + \hat{v}_{i}^{\xi} \cdot K_{i} \cdot y_{i}$$

Let $P = \{\xi : \tau^{l}(\xi) = k\}$ be the set of scenarios where customer k is the critical one. Then $\mathbb{E}[Q^{i}(x, y, \xi) \mid P] = \mathbb{E}\left[\sum_{j \in J} \left(g_{ij} - \sum_{j \in J} \left(g_{ij} - g_{ij} - g_{ij$ $= \sum_{j \in J} \left(g_{ij} - c_{ij} \right)$

And by the law of total probabilities, for any partition \mathcal{P} of the probability space:

$$\mathbb{E}[Q^{i}(x, y, \xi)] = \sum_{P \in \mathscr{P}} \mathbb{E}[Q^{i}(x, y, \xi) \mid P] \cdot \mathbb{P}[P]$$

Hence, we can partition the probability space into at most 1 + # customers assigned to the facility subsets.

$$_{i} - c_{ij} - \hat{v}_{i}^{\xi} \Big)^{+} \cdot \xi_{j} \cdot x_{ij} + \hat{v}_{i}^{\xi} \cdot K_{i} \cdot y_{i} \mid P$$

$$(x_{ij} - \hat{v}_i^{\xi})^+ \cdot \mathbb{E}[\xi_j \mid P] \cdot x_{ij} + \hat{v}_i^{\xi} \cdot K_i \cdot y_i$$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$ Capacity $K^i = 6$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$ Capacity $K^i = 6$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$ Capacity $K^i = 6$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$ Capacity $K^i = 6$

Two demands $\xi_1 \rightsquigarrow \exp(1/2)$ and $\xi_2 \rightsquigarrow \exp(1/3).$

Capacity $K^i = 6$

$$S_1 \le K$$
 $S_2 \le K$ $k = 2$ $\mathbb{P}[\tau^i = k]$ 0.350.050.60 $\mathbb{E}[\xi_1 \mid \tau^i = k]$ 2.578.001.16 $\mathbb{E}[\xi_2 \mid \tau^i = k]$ 3.004.16

Benders formulation for general distributions.

Theorem: Given an incumbent solution (x^*, y^*) , then

$$\Theta^{i} \le \sum_{k \in J} \sum_{j \in J} (g_{ij} - c_{ij} - (g_{ik} - c_{ik}))^{+}$$

 $j \in J$

is a Bender optimality cut for the master problem.

- $\cdot \mathbb{E}_{x^*}[\xi_j \mid \tau^i = k] \cdot \mathbb{P}_{x^*}[\tau^i = k] \cdot x_{ij}$
- $+\sum (g_{ij} c_{ij}) \cdot \mathbb{E}_{x^*}[\xi_j \mid \tau^i = \varnothing] \cdot \mathbb{P}_{x^*}[\tau^i = \varnothing] \cdot x_{ij}$

$$+\sum_{k\in J} (g_{ik} - c_{ik}) \cdot K_i \cdot y_i \cdot \mathbb{P}_{x^*} [\tau^i = k]$$

Algorithm for general distributions

$\min_{x,y} \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu_j x_{ij} - \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} g_{ij} \mu_j x_{ij} - \sum_{i \in I} f_i y_i + \sum_{i \in I} f_i y_$ 1) Solve $x_{ii} \le y_i \qquad Ax + By \le h \qquad x, y \in \{0, 1\}$

2) Given constructed facilities and assignment of customers, for each facility sort their assigned customers by decreasing cost and construct the partition of scenarios for the different critical customers τ^{l} .

3) Compute $\mathbb{E}[\xi_i | \tau^i = k]$ and $\mathbb{P}[\tau^i = k]$

4) Add the violated Bender optimality cut to the main problem

$$\begin{split} \Theta^{i} &\leq \sum_{k \in J} \sum_{j \in J} \left(g_{ij} - c_{ij} - (g_{ik} - c_{ik}) \right)^{+} \cdot \mathbb{E}[\xi_{j} \mid \tau^{i} = k] \cdot \mathbb{P}[\tau^{i} = k] \cdot x_{ij} \\ &+ \sum_{j \in J} \left(g_{ij} - c_{ij} \right) \cdot \mathbb{E}[\xi_{j} \mid \tau^{i} = \emptyset] \cdot \mathbb{P}[\tau^{i} = \emptyset] \cdot x_{ij} + \sum_{k \in J} \left(g_{ik} - c_{ik} \right) \cdot K_{i} \cdot y_{i} \cdot \mathbb{P}[\tau^{i} = k] \\ &\text{no cut added, stop (optimal solution). In other case, go to (1).} \end{split}$$

5) If r

$$-\sum_{i\in I}\Theta_i$$

Computing $\mathbb{E}[\xi_i | \tau^i = k]$ and $\mathbb{P}[\tau^i = k]$

Bernoulli distribution with mean μ_i :

$$\mathbb{P}_{\hat{x}}[\tau^{i} = k] = \mu_{k} \cdot \mathbb{P}[S_{j < \tau_{k}^{i}} = K_{i} - 1]$$

$$\mathbb{E}\left[\xi_{j} \mid \tau^{i} = k\right] = \begin{cases} \mu_{j} & \hat{x}_{ij} = 0\\ \mu_{j} & \hat{x}_{ij} = 1, j > k\\ 1 & \hat{x}_{ij} = 1, k = j\\ \frac{K_{i} - 1}{\eta_{\hat{x}}} & \hat{x}_{ij} = 1, j < k\\ \mu_{j} \cdot \frac{\mathbb{P}\left[\sum_{l:\hat{x}_{il} = 1, l \neq j} \hat{x}_{il} \cdot \xi_{k} < K_{i} - 1\right]}{\mathbb{P}\left[\sum_{l:\hat{x}_{il} = 1} \cdot \xi_{l} < K_{i}\right]} & \hat{x}_{ij} = 1, k = \emptyset \end{cases}$$

where $\eta_{\hat{x}}$ is the number of customers assigned to the facility.

Computing $\mathbb{E}[\xi_i | \tau^i = k]$ and $\mathbb{P}[\tau^i = k]$

Exponenti

ial distribution with parameter
$$1/\mu$$
:

$$\mathbb{P}_{\hat{x}}[\tau^{i} = k] = \frac{e^{-K_{i}/\mu} \cdot (K_{i}/\mu)^{\eta_{\hat{x}}}}{\Gamma(\eta_{\hat{x}} + 1)} = \mu \cdot f_{Gamma(\eta_{\hat{x}} + 1}, \mu)(K_{i})$$

$$\mathbb{E}\left[\xi_{j} \mid \tau^{i} = k\right] = \begin{cases} \mu & \hat{x}_{ij} = 0\\ \mu & \hat{x}_{ij} = 1, j > k\\ \mu + \frac{K_{i}}{\eta_{\hat{x}} + 1} & \hat{x}_{ij} = 1, k = j\\ \frac{K_{i}}{\eta_{\hat{x}} + 1} & \hat{x}_{ij} = 1, k = j\\ \mu \cdot \frac{\mathbb{P}[X_{\nu+1} \le K_{i}]}{\mathbb{P}[X_{\nu} \le K_{i}]} & \hat{x}_{ij} = 1, k = \emptyset \end{cases}$$

where $\eta_{\hat{x}}$ is the number of customers assigned to the facility and X_{ν} is a r.v. with Gamma distribution of parameters $(\eta_{\hat{x}}, \mu)$

Small instance: Bienek with i.i.d. Bernoulli demands

Using Bienek instances as Bernoulli i.i.d. demands (12 customers := 4096 scenarios)

Solving time (seconds)							
Instance (λ,γ)	Det. Equiv	Bender All Scen.	Compact i.i.d.	General Bender			
1.5/1.0	21.87	163.23	0.01	0.04			
1.5/2.1	30.07	119.68	0.02	0.02			
1.5/3.0	29.82	51.03	0.01	0.01			

Google Research

Even with a small instance, using all scenarios in a DE formulation is too costly.

Small instance: Bienek with i.i.d. Exponential demands

Solving time (seconds)					
Instance (λ,γ)	Compact i.i.d.	General Bender	S (Mea		
0.5/1.0	0.02	2.23	1		
0.5/2.1	0.04	0.15	C		
0.5/3.0	0.01	0.09	C		
1.0/1.0	0.02	0.55	C		
1.0/2.1	0.01	0.09	C		
1.0/3.0	0.02	0.03	C		
1.5/1.0	0.01	0.12	C		
1.5/2.1	0.02	0.13	C		
1.5/3.0	0.03	0.00	C		

Google Research

(*) Average time over 100 repetitions with 100 scenarios

Similar times, but in most of the cases SAA does not obtain the optimal solution.

Method 🛑 GSB 🖨 SAA

Large Instances: Albareda-Sambola et al (2011) with i.i.d. demands

% of the instances

Large Instances: Albareda-Sambola et al (2011) with i.i.d. demands

True Gap

Albareda-Sambola et al (2017) with non-i.i.d. Bernoulli demands

Family

