Google Research

Stochastic faclility location problems with outsourcing costs

Eduardo Moreno (Google Research, France & Universidad Adolfo Ibanez, Chile)
lvana Ljubi¢ (ESSEC Business School of Paris, France)
Javiera Barrera (Universidad Adolfo Ibanez, Chile)

|ICSP 2025, Jul 28-Aug 1, 2025.



Google Research

Problem definition: a two-stage stochastic problem

First stage: an "assignment” problem.
Facility location: Customers assigned to open facilities
- (Generalized Assignment: Tasks assigned to agents

- Vehicle Routing: Customers assigned to vehicles

- Second stage: an stochastic demand to be served with outsourcing/penalty.

- Customer/task demands are served by the assigned facility/agent/vehicle minimizing
COst.

f the total demand is higher than the capacity, the unserved demands is outsourced /
penalized at a higher cost.

- Objective: Minimize the assignment cost + expected value of serving demand.

- This talk: Solve the problem for general probabillity distributions (not scenarios)
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Facility Location
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Given a set of customers J with demand c{] j
and a set of potential facilities / d=3

to decide a subset of facilities to open (y; = 1)
and an assignment of customers to facilities (x.

to fulfill the demand of clients minimizing the
installment fix costs f; and assignment costs g;;
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Facility Location
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Capacitated Facillity Location
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Given a set of customers J with demand c{]
and a set of potential facilities / d=3
to decide a subset of facilities to open (y; = 1) m m
and an assignment of customers to facilities (x;; = 1)

to fulfill the demand of clients fmnlmlzmg the
installment fix costs f; and assignment costs g;;

while satisfying the capacity of the facility K;
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Capacitated Facility Location with Outsourcing

Given a set of customers J with demand c{]
and a set of potential facilities /

to decide a subset of facilities to open (y; = 1)
and an assignment of customers to facilities (x;; = 1)

to fulfill the demand of clients minimizing the m ‘
installment fix costs f; and assignment costs g;; ==

while satisfying the capacity of the facility K; .
allowing to outsource some demand (at a hlgher cost A, i) g?&@m@}
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Capacitated Facility Location with Outsourcing
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Given a set of customers J with demand d;
and a set of potential facilities / d;

to decide a subset of facilities to open (y; = 1)
and an assignment of customers to facilities (x;; = 1)

to fulfill the demand of clients fmnlmlzmg the - Q
installment fix costs f; and assignment costs g;; == .

while satisfying the capacity of the facility K;
allowing to outsource some demand (at a hlgher cost h g&tsourcwg} O=
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Stochastic Capacitated Facility Location with Outsourcing

Given a set of customers J with random demand cfj -
and a set of potential facilities /

il

to decide a subset of facilities to open (y; = 1) m m
and an assignment of customers to facilities (x;; =1)

to fulfill the demand of clients fmnlmlzmg the - Q 5@ m

installment fix costs f; and assignment costs g;; = :
while satisfying the capacity of the facility K; .

allowing to outsource some demand (at a hlgher cost h § = Outscurcwg} OE
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Stochastic Capacitated Facility Location with Outsourcing
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to decide a subset of facilities to open (y; = 1) m

and an assignment of customers to facilities (x i ;_ 1)

to fulfill the demand of clients fmrlmlzmg the - Q 5@ m
installment fix costs f; and assignment costs g;; =

while satisfying the capacity of the facility K;

allowing to outsource some demand (at a hlgher cost h gi_gutsourcwg}
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem:

- 1st stage decision (here-and-now): to
open facilities and assign customers to them.

{—gutsourcirﬁ_}.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem: :
- 1st stage decision (here-and-now): to m
open facllities and assign customers to them. m m

- 2nd stage decision (wait-and-see): to
g_gutsoum;@

route and/or outsource the random demand.
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Stochastic Capacitated Facility Location with Outsourcing
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem:

-+ 1st stage decision (here-and-now): to
open faclilities and assign customers to them.

- 2nd stage decision (wait-and-see): to
route and/or outsource the random demand.
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Stochastic Capacitated Facility Location with Outsourcing
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We assume a two-stage stochastic problem: 2 Wi S K; -y,
- 1st stage decision (here-and-now): to J
open faclilities and assign customers to them. Second-stage problem
- 2nd stage decision (wait-and-see): to (independen’[ for each faCm’[y)

route and/or outsource the random demand.
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Application example.

. .
Partnership between Google and Ignite
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Energy Access A mini-grid provides power to the community in Nyimba Mwana village in the Eastern
Province of Zambia, on Feb. 20.

THE MISSION TO ELECTRIFY
AFRICA MIGHT FINALLY BE
UNDER WAY

Plunging solar panel prices and international funding are now An Ignite Energy Access solar power installation in Rwanda
spurring the rollout of so-called mini grids that can transform IGNITE ENERGY ACCESS

(Images from https://igniteaccess.com/media/)
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Application example.
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Facllities: “minihubs” with containers
of solar panels. Very expensive due
to the lack of roads.

Customers: small villages in the
country side of Mozambique.

Agents visit customers by foot or
bikes due the lack of roads.

Uncertainty: adoption of the
technology In the villages.

longitude
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a
sample average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Strengthened formulation.

4. Computational experiments
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Second-stage problem : Knapsack problem
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Optimal solution: to allocate the c
demand in decreasing order of profit ¢y
until the capacity of the facility Is o
fulfilled. Cq
wiy = K~ Yypimals j =7 & & & & & &
0 J > T Notation assumption: indices j are already in decreasing order of profit.
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Second-stage problem : Knapsack problem
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0 J > T Notation assumption: indices j are already in decreasing order of profit.
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Dual solution of the subproblem

Dual of the subproblem is given by A
K
- N SPI A C;
ozZI{)l,lvnzO Z 042353 Tij T Vi S Y
1€d
g+ > ciy  VjES C,
and I1ts optimal solution is given by -
N 3
¢ y; >0 _ \+ Ca
,y {O y;k — O (] ( 1) ’L) C5
N . C
where C> 1S the cost of the critical 0
customer where the capacity of the £, £, £, £, £ €
facility is fulfilled (or zero if not).
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Dual solution of the subproblem

Dual of the subproblem is given by A
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C
. éf y; >0 o —(c--—é€)+ Ci
Vi — 0 y;k — 0 1] 1] 1 CS

where (f‘l. s the cost of the critical
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facility is fulfilled (or zero if not).
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Dual solution of the subproblem

Dual of the subproblem is given by
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Benders formulation for a discrete set of scenarios

Given a discrete set of scenarios s € S with probability P, we can reformulate

min nyl + ) ) b — ) ) po

el el jej el ses

x,y)ex x,y € {0,1}
0! < Ql(x,v,&) VielseS

where

Qi(x,y, &% := min Z 06X+ v Ky ta+y 2 cpvjed
a>0,y>0




Google Research

Benders formulation for a discrete set of scenarios

Given a discrete set of scenarios s € S with probability P, we can reformulate

mmeyl+ZZhl],u] ZZPS

el el jej el ses

x,y)ex x,y € {0,1}
0! < Ql(x,v,&) VielseS
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Benders formulation for a discrete set of scenarios

Given a discrete set of scenarios s € S with probability P, we can reformulate

mm nyl + ) ) b — ) ) po

1€l el jel el seS

x,y)ex x,y € {0,1}
0! < Ql(x,v,&) VielseS

and  Q'(x,y,&%) < Z azcX; + 1Ky for any feasible dual solution (a*, y*)
jet

IN particular Oi(x, y, &) < Z (Ci- — 6“?’*) - &t X+ c‘f* K -y
jeS
where C "is computed as before from any valid assignment.
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Benders method for discrete scenarios

1.- Solve main problem  min Zfiyi T Z Z Py — Z ZPSQS
XoY

1€l el jel el ses$

x,y)yed x,ye {01}

2.- Given iIncumbent solution (xk, yk) compute the cost of critical customer 6fs’k

for each open facility i and for each scenario &°.

3.- Add the Bender optimality cuts to the main problem

4.- Resolve main problem and iterate.
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Benders method for discrete scenarios

1.- Solve main problem rmn Z Jiyi + Z Z hipiX;; Z Z p,0;

1€l el jel el ses$

x,y)yed x,ye {01}

2.- Given iIncumbent solution (xk, yk) compute the cost of critical customer 6fs’k

for each open facility i and for each scenario &°.

3.- Add the Bender optimality cuts to the main problem

o< Y (cy= &) g xR Ky
jel

4.- Resolve main problem and iterate.
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a sample
average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Strengthened formulation.

4. Computational experiments
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Dual solution of the subproblem
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Dual solution of the subproblem

— Primal solution Dual solution
I A

O Wi = =g =>v,=0

qQu o -1 = g — C.

GCJ Win = ) i1 - 11 11

& — 9 Ap = 82 — Ci2

N Wiz =

Az = 83 — Cj3
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Dual solution of the subproblem

— Primal solution  Dual solution
Vt%l_::: 1 T = % :$>€§ =0
Wi = 2 %1 = 8i1 ~ Ci
- Pip = 8 — Cip
Wiz = 2

Az = 83 — (3
i A
T =2=V,=8r—Cp

Ay = 81— C1—V;

RER
3
ek
1
o

HEEE

ap =0

Scenario 2 Scenario T

CXKS — ()
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Dual solution of the subproblem

— Primal solution  Dual solution
O — 1 =0 =>v.=0
= Wi = I
e W, =2 %1 = 8i1 ~ G
l

5 — 9 Ap = 82 — Ci2
% Wiz = An = g — C;

13 13 13
CC\ID = Wi =3 U'=2=V;=8p—Cp
— = l . A
~ . - di1 = 81 — Ci1t — Vi
- = Win = o~ = 0
O, . 2 —
% = Wiz = a3 =0
cg = wi =4 U=2=V,=gp—Cp
= - Wi = a1 =81 —G1— Vi
C}DD a3 =0
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Computing E [Qi(X, Y, 5)]

— Primal solution Dual solution
>3 = .
C_> Wllz T-@:VZ—O
2 Wy =2 = %? = ), -
D , Can we “group” all scenarios
% Wiz = where customer 2 is critical?
O 3 Wi =3
o = Wip =
D - o
A - Wiz =
2 = Wi1 = 4
= ) Wi =
C —
. Wiz =
N
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Revisiting the dual problem

| et S;(L &) be the aggregated A

. C K
demand of the best j 1
customers assigned to 1: -
2
S]’l(xa ) = Z S1Xil
I<j o
Cyq
Then the optimal value of the o
subproblem is given by Ce

Qi(xa V,6) = Z (Czjj o Ci,j+1) ' min{Sji(X, o) Kij E1 EQ E3 E4 ‘55 E6

jel
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Revisiting the dual problem

| et S;(L &) be the aggregated

demand of the best J
customers assigned to 1:

Then the optimal value of the
subproblem is given by
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Expected value of the second-stage problem

For a fixed x we can obtain closed formulas for many demand distributions:

Bernouli distribution with mean ;:  Ewil = ;- Fs (K= 1)

Poisson distribution with mean j;;

‘[IIliIl{S}(X, 5), Kz}] — Ki - (1 _fPOisson(ﬂSj(x,@)(Ki)) T (/“tSj(x,cf) - Kz) I P0iss0n(/45j(x,@)(Ki — 1)

Exponential distribution with mean fi:
‘[min{Sj(xa §),Kiyl=j-pu-F Gamma(j+1,1/,u)(Ki) + K; (1 — Gamma(j,l/,u)(Ki))
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Benders formulation for a discrete set of scenarios

Main problem

min o ) fyi+ ), ) vy = JE[Qwy.0] s (k) € X

el el jel el

min 3 3 fit 2, Xt = 2y 2, Cip =€) - E [minlSin 0, K) | < () € 2

el el jeJ el jelJ




Key idea: How to compute E [min{Sj"(x, ), Ki}]
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By the law of total probabllities:

® |min(S/(x, ), K} | =

Sji(xa $) = Z SiXir

- lmin{é}"(x, &), K - lSJi(x,cf)SKi] +

— lmin{b}l(x, 5),Ki} ' 15}(36,5)>Ki
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

By the law of total probabllities:

- min{b}?(x, 5),Ki}] = IC lmin{S}(x, c), K;} - 15;‘(x,5)s1<,-] T I lmin{b}?(x, c), K} - IS}(x,§)>Ki

= lSji(x, g) - 1S]?(x,§)SK,-] + lKi‘ IS;(x,fS)>Ki]

Sji(xa $) = Z S1Xil
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By the law of total probabllities:

® |min(S/(x, ), K} | =

2

- lmin{S}(x, £),K.} -1 S;’(x,g)sK,-] + [ lmin{b}?(x, £),K.} -1 Six.)>K,

- lSji(X, &) - 1S]?(x,§)§K,-] T lKi‘ IS]?(x,§)>Ki]

= le&z’ lSJ?(x,cf)SKi] X+ K- P lSji(X, ) > Ki]
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

By the law of total probabllities:

- min{b}?(x, 5),Ki}] = IC lmin{S}(x, c), K;} - 15;‘(x,5)s1<,-] T I lmin{b}?(x, c), K} - IS;'(x,f)>Ki

= lSji(x, g) - 1S]?(x,§)SK,-] + lKi‘ IS}(X,@>K1']

Z = le&z' lSJ?(x,cf)SKi] X+ K- P lb}i(x, ) > Ki]
I<j /! /!

Sji(xa $) = Z SiXir

Non-linear function because coefficients also depends on x




Key idea: How to compute E [min{Sj"(x, ), Ki}]
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But we can use another first-stage assignment x’ too

- |min(Si(x, ), K} | =

<

— lmln{‘s}l(xa 5)91{1} . 1;5}?(X',§)SK,-] + I lmln{‘sj;(xa 5)91{1} . 1‘5}?(x’,§)>Ki]

2

: lSjl(x’ 6) 15;@:5)9@] +E lKi‘ 1S}<x',5>>1<i]

- le&z' 15;(x',5)s1<,.] X+ K- P lSji(X’, &) > Ki]

Linear upper bound for a fixed x’
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Key idea: How to compute [E [mln{Sj’(x, ), Ki}]

Lemma: [ [min{é}?(x, ), Ki}] s a concave function at x and

h]l(xa x,) .= Z - lé:[ ’ 1S]l(x,,§)SKl] ’ xll + Kl ’ [FD lSji(x', 5) > Kl]
I<j

s in its subdifferential at x”
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Example:

Two demands &; w exp(1/2) and &, w exp(1/3) with K=3

, !
| ! : '

] L i ( I | I 1 1 ! | O | | [ ! I 10

0.0 0.5 1.0 0.0 0.5

= [min{S,(x, £),3}] hi(x, x") at x" = (0,1)
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Benders formulation for general distributions

We add a variaple z; > () which correspond to the value of E lmin{Sji(x, £), K}

min Zfiyi + Z 2 Siilirii — Z Z (Ci,ai( )~ Cioi( j+1))sz

I el icl jeJ icl jeJ

't can be solve by iteratively adding Generalized Benders optimality cuts for the
given incumbent solution (x', y’)

2 < Z - lgtl. 15;(x',§)s1<,-y{] Xy + Ky P |SI,€) > Kiyi/]




Google Research

Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a sample
average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Strengthened formulation.

4. Computational experiments
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valid constraints on z;; variables. (zlj ~ E [min{S}(x, cf),K,-}D

- lmin{S}(x, af),Ki}] < [E lS’?(x’ 5)] - Ziji S Z =[S,

le:.6'(D)<o'(j)
i lmin{sji(x, £, Ki}] <K Lz <Ky,
| | Zjj 2 Zjj-1
Sjl(xa 5) — Sjl_l(xa 5) T fjxl] =
Zij < Zi,j—l + _[5]])61]




Submodularity of E | min{si(x, &), K;}|
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A set-valued function Is sulb modular If it has “diminishing returns”.

. Lemma: Set-valued function u(A) := min{Sj(l 1, ¢), K:y:} is submodular for

a given x, v, C.

. Corollary: Set-valued function p'(A) :=

modular for a given X, y.

: [min{Sj(lA, 5, Kl-yi}] s sub-
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Submodularity of E | min{si(x, &), K;}|

Since E lmin{SJ?(x, €), Ki}] 'S submodular, we can add submodular cuts (7)

“ < _[min{Sj(xl)a Kiyi}] -y + Z _[511 S{(x)+ELK; T (Ki — Sj(x,))15’].(x')§1(i<5j(x')+gl] * X
x;=0

- Z (6L ax, + (K= (8= ED1 g _zcies ) (1= X))
[:x/=

(*) see Nemhauser & Wolsey (1981), Ljubic & M. (2018)
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Example:

Two demands &; w exp(1/2) and &, w exp(1/3) with K=3

1.0

0.5

0.0

| 1.0
0.0

Submodular cut at x" = (0,1)
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Plecewise linear upper bound for fractional solutions.

Both Bender and submodular cuts requires an integer solution x’ to compute the
coefficients to generate a cut. Gan we create cuts for the relaxation of the
oroblem??

f D) si<oicp X = K € N, we can consider to sum the & “worst” customers

Proposition: Assume that random demands can be ordered In the usual
stochastic order &1y 2, &) 2t --+5(j)- 1hen

- lmin{b}(x),Kiyl-}] < lmln { Z f(l)’ }]
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Plecewise linear upper bound for fractional solutions.

Let B, (k) := ~[min{ &, K:y;}] the expected value considering the “worst” k
customer. We can extend this function using a piece-wise linear function,
creating the valid upper bound: R
2 < Bi(k) + (Bi(k + 1) — B(K)) - D) x—«
leJ:6'(D)<6'(j) B /E Bif® i
For i.i.d. demand distributions, & is the sum J 7
of k random variables. The bound is tight. SN S S -

For single-parameter distribution (e.g. exponential or Poisson) the k worst
customers are the one with higher expected demand. The bound is not tight.
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Stochastic faclility location problems with outsourcing costs

1. Bender formulation for a discrete set of scenarios (for example, a sample
average approximation of the demand distributions)

2. Bender formulation for general distributions.

3. Strengthened formulation.

4. Computational experiments
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Computational experiments

Dataset tor benchmarking:

- Albareda-Sambola et al (2011). 297 instances based on TSP problems, with
15 facillities and 30 customers.

- Random demands with Bernoulli and Exponential distributions with mean
value 0.1, 0.5 or 0.9.

+ Comparison of Benders, Submodular and PWL cuts using multi-cut (one cut for
each sz) or a single-cut (aggregated cut for each facility).

+ Coded in C++ using Gurobi as solver.
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Performance profile for 1.i.d. demands

bernoulli_iid exponential_iid
100% -~
907%1 Algorithm
N 80%- — GB
S 70%-
- ° —— GB+SM
(©
i 60%- —— GB+PWL
C
o —— GB+SM+PWL
S 40%-
— :
©  30%- MultiCut
NS .
10% - = = Single cut
0% -

0% 5% 10% 15% 0% 5% 10% 15%
True Gap obtained (timelimit: 1 hr)

- Adding PWL cuts solved all problems in a few seconds
- 50%/40% of instances are solved up to optimality. ~80% with <5% gap.
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Performance profile for 1.i.d. demands

bernoulli_iid exponential_iid bernoulli_iid exponential_iid
20% -
Q
© .
% MuIUCgt 15%- ° MultiCut
2 100 £ Multi cut o ° o £ Multi cut
o ' c
) Single cut o o Single cut
Q +J o/ O
! Algorith R T e
v 10- Jorithm o Algorithm
= I I I ES GB+PWL Q frage
[ ?
o 1 I I . . - B GB+SM+PWL o . B GB+SM
E 7 I i - I I - CEx I
3 I
3 1 oo || e i ll -
0.1- 0%- P | I
0.1 0.5 0.9 0.1 0.5 0.9 i N N S N N

Mean demand of distribution




Google Research

Performance profile for non-I1.1.d. demands

bernoulli
100% -
90% - .
Algorithm
80% -
n ’ — (5B
Y 70%-
c e GB+SM
O o/,
I 60% e GB+PWL
£ o/
g 0% — GB+SM+PWL
S 40%-
e 30% - MultiCut
X 500, — Multi cut
f -
0%, = = Single cut
6 -
0% -

0% 5% 10% 15%
Best Gap obtained (timelimit: 1 hr)

- oo many cuts. Aggregating cuts performs better.
- PWL cuts are not longer efficient. Submodular cuts improve the performance
- Still > 90% of instances solved with <5% gap.
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Comparison with sample average approximation

bernoulli
100% - — e mEEEE————————-
90(y 0---‘-“ "4—-‘;’—
0 - b
gl .

80% - g Algorithm

(Vp] *"® %
.‘ /

§ 70% - o ,/,/ — SAA (10 scen)
8 60%- /9/ —— SAA (100 scen)
n ad ?
= o/ | N 4 —— SAA (1000 scen)
- 50% //
c .' .
5 40% - //// MultiCut
o : P

30% - - P —— Multi cut
X : ’

20% - : / — = Single cut

; P
10% - : Y 4
. R4 R R
0% - == —
0% 5% 10% 15%

Best Gap obtained (timelimit: 1 hr)

- SAA with 10 scenarios is solved up to optimality, but solution quality is very bad.
- Adding more scenarios improves the quality but became harder to solve.

- Generalized Bender outperforms SAA, particularly for smaller gaps.
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Conclusions

Benders methodology for two-stage assignment problem where the second
stage Is a stochastic knapsack problem

- An exact solution to the problem is achievable, precluding the necessity for
scenario sampling.

- We can exploit the structure of the subproblem: small number of optimal
dual solutions where we can compute the expectations by conditioning.

Not an approximation! Provide true bounds for the problem.
- Similar ideas can be extended to other problems.

+ See also Benders Adaptive Partition cuts (Ramirez-Pico & M., Math Prog
2022, Ramirez-Pico, Ljubic, M., Transp Sci 2023).




