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A B S T R A C T

In continuous steel casting operations, heats of molten steel are alloyed and refined in ladles, continuously cast
and cut into slabs, and hot-rolled into coils. We present a mixed-integer program that produces a daily casting
schedule and that is solved using state-of-the-art software for a 100% direct-charge steel mill; two casters
concurrently produce slabs, which are rolled into coils at a single hot rolling mill. This model minimizes
penalties incurred by violating plant best practices while strictly adhering to safety and logical constraints
to manage risk associated with manufacturing incidents. An efficient formulation, combined with variable
reduction and cutting planes, expedites solutions for small instances containing hundreds of variables and
thousands of constraints by factors of at least two or three (and sometimes even 100); instances an order of
magnitude larger along both problem dimensions suggest solutions that reduce costs incurred using plant best
practices by as much as 40%.
1. Background

Producing almost two billion tons per year, modern steel plants cre-
ate a wide range of products of which 97% is by steelmaking, continu-
ous casting and rolling operations (WorldSteel Association, 2022). Each
plant has its own considerations when scheduling customer orders, and,
correspondingly, there is no industry-wide accepted optimization tool
at the time of this writing. This paper investigates the scheduling of
continuously cast coils produced in minimills from heats of molten
steel. Thin slabs are direct-charged into a tunnel furnace and imme-
diately hot rolled, i.e., not drawn from work-in-process inventory. We
focus on the Nucor Steel facility in Decatur, Alabama, USA which runs
a minimill operation with two continuous casters that directly feed a
single hot rolling mill. A mixed-integer program creates schedules for
both the heat and coil sequences.

1.1. Steelmaking

In conventional steelmaking, iron is produced from iron ore in
a blast furnace, and transformed to steel in a basic-oxygen furnace
or similar vessel. Minimill steelmaking operations recycle scrap (see,
e.g., Rong & Lahdelma, 2008) purchased on a secondary market, which
is melted in an electric furnace. In both conventional (integrated) and
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minimill operations, the composition, or ‘‘grade’’ of the molten metal
is created by alloying and ladle-refining. Fig. 1(a) shows an example of
the resulting batch or ‘‘heat’’ of molten steel in its ladle, which holds
about 160 tons, and contains a single, specific grade with a uniform
composition. Each heat is continuously-cast and cut into slabs, which
are rolled into coils. In addition to the steel grade, each customer
order consists of the coil dimensions (thickness or ‘‘gauge,’’ width,
and length) which define the ‘‘order weight.’’ Due to possible edge
trimming, at additional cost, the final width may be narrower than
the cast width; the larger cast width and weight must be used when
defining the weight for the heat.

Because the molten metal becomes mixed during the continuous-
casting process, the extent of the composition difference between the
grades of prior and subsequent heats is important. The coils at the end
of one heat and at the beginning of the next contain ‘‘intermixed’’ steel.
The quantity of the steel, the severity of the intermix, and the ease
with which the intermixed steel can be sold on a secondary market
or stocked for later sale affect the quality of a given schedule. Models
predict the number of tons that must be scrapped for a consecutive
pair of steel grades, casting conditions, and customer tolerances which
define the grade transition (Thomas, 1997).
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Fig. 1. Steelmaking and casting processes (Primetals Technologies, 2019; Roy, 2018).
1.2. Continuous casting

Each ladle containing a heat of steel is transported to the continuous
caster, where the molten metal flows through a holding vessel into a
water-cooled, bottomless mold that creates the strand. Although the
thickness is fixed for a given operation (3.6 inches at Nucor), the mold
side-walls are adjustable during casting to produce the desired width.
The solidified strand exiting the caster is cut into thin slabs, as shown in
Fig. 1(b). At most minimills, including at Nucor, the slabs exiting each
caster immediately enter a tunnel furnace, which homogenizes their
temperature and delivers them to the hot rolling mill. This process is
known as 100% ‘‘direct charging,’’ in which there is no slab inventory.
This policy contrasts with most integrated steel plants, which can
transport and store slabs, so that scheduling the heats produced in
steelmaking and continuous-casting operations can be separated from
scheduling the coils produced in the hot-rolling operation.

1.3. Hot rolling

Slabs exiting the tunnel furnaces are delivered to the hot rolling
mill, alternating between the two casters at the Nucor minimill. After
decreasing its thickness to about 1.18 inches via a roughing mill, each
slab passes through a five-stand hot finishing mill, as illustrated in
Fig. 2(a). Each roll stand decreases the thickness of the slab, now called
‘‘strip,’’ according to the compressive roll force applied by the pair of
work rolls. Exiting the final roll stand, the strip thickness reflects the
gauge ordered by the customer. The strip product is cooled on a runout
table, and formed into coils to be sold or sent for further downstream
processing.

As thickness decreases during each hot rolling stand, the strip speed
should be increased with increasing length to maintain constant vol-
ume. Errors in the roll force applied to achieve the desired intermediate
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gauge cause a mismatch in speed, which may result in strip shape
defects or cause a catastrophic accumulation between two roll stands,
known as a ‘‘cobble’’ (see Fig. 2(b)), which shuts down the entire
operation and presents a major safety hazard. Because roll force is
adjusted using a sophisticated artificial-intelligence system, errors (and
associated cobbles) are more likely when the percent gauge change
between consecutively cast coils is larger, or the strip is thinner.

As slabs are rolled into coils, the frictional forces gradually wear
down the rolls. The strip edges tend to cause slight grooves, which
generate surface defects in subsequent coils. To avoid this problem, the
width of consecutive slabs should not increase. Thus, slabs are generally
cast from wide gradually to narrow, and also from thick gradually to
thin. Eventually, the worn surfaces of the rolls cause too many surface
quality problems on the product, so the rolls are changed, after which
the width and gauge are ‘‘reset,’’ i.e., coils can be wide and thick
again. Although the last roll stand usually experiences higher forces and
wears down first, operators usually take advantage of the down time to
simultaneously change all of the rolls. We term this a ‘‘roller change,’’
where roller refers to all of the rolls in the five stands together. Our
optimization model enforces operational rules (constraints) designed to
lower the risk of cobbles and quality problems.

1.4. Downstream processing

Many coils are treated with downstream processing operations to
meet a wide range of possible product requirements. These operations
include ‘‘pickling’’ with acid to remove scale and rust; cold rolling to
further decrease gauge and increase strength; galvanizing, or coating
the coil with zinc to improve corrosion resistance; and trimming, to
decrease width and sharpen the edges. The only downstream process
considered in our scheduling model is trimming, which provides an
Fig. 2. Steel Rolling Process (Board & Vellum, 2015; Industrial History, 2021).
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opportunity to schedule the ‘‘cast width’’ of a slab to be wider than
the final ‘‘order width’’ of the coil required by the customer. This
is often done to accommodate other scheduling constraints, such as
rolling from wide to narrow, creating full heats, minimizing intermix
between grades, and avoiding cobble risk. However, trimming also
incurs additional cost. Sierra-Paradinas et al. (2021) present a mixed-
integer program to address cutting to suit customer orders. Another
method to accommodate scheduling constraints is to insert a ‘‘stock
coil’’ (associated with no immediate customer) into the schedule. Such
coils incur an opportunity cost of foregoing an ordered coil, and an
inventory storage cost. All other coils are shipped immediately to fulfill
a customer order (see Fig. 3).

Fig. 3. Finished coils processed for shipping from Nucor Steel (Nucor, 2022).

1.5. Example process summary

Our scheduling optimization model focuses on operations at the
Nucor Steel mill located in Decatur, AL. This minimill features two
electric-arc furnaces that melt scrap and alloys into ladles, each con-
taining a heat of 150–170 tons of molten steel with a specific grade. A
heat is refined in one of two liquid metallurgical facilities that serve
two continuous casters operating in parallel. All slabs produced on
each caster are direct-charged into their respective tunnel furnaces and
delivered to the hot rolling mill. While both casters are operational, the
hot rolling mill typically alternates between the two casters from which
it receives coils, automatically adjusting its rolling parameters based
on the previous coil processed by the caster from which the current
coil arrives. This enables significant alternating differences between
successive coils, according to the slab’s originating caster. Regardless
of the originating caster, successive coils processed through the rolling
mill should be relatively similar in width. After decreasing the slab’s
thickness to its final gauge in the hot rolling mill, and coiling it, the
product may be sent for downstream processing such as trimming,
or delivered to the customer. Fig. 4 depicts the complete process of
Nucor’s operation.
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2. Literature review and contribution

Most steel manufacturing operations lack sufficiently detailed soft-
ware to make their scheduling decisions; as a result, experienced oper-
ators are left to generate manual schedules (Graves, 1981; Maccarthy &
Liu, 1993). Steelmaking, and, in fact, various facets in the industry, pos-
sess specific rules related to creating good schedules (Lee et al., 1996).
As optimization modeling has become more prevalent and solvers have
rendered instances more tractable, some steel companies have for-
mulated formal optimization models, thereby increasing productivity,
efficiency and throughput.

Tang et al. (2000a) schedule just the coils through the hot rolling
mill at the Shanghai Baoshan Iron & Steel Complex using a genetic
algorithm. Tang et al. (2000b) determine the time at which to schedule
a batch (or ladle’s worth of steel) using a linearized model originally
posed as a nonlinear program; the detailed, discrete decisions we
consider are absent, but timing considerations and temperature levels
are emphasized. Mao et al. (2014) add discrete decisions, casting the
model in a hybrid flowshop framework, but omit considerations specific
to an order such as the geometry and chemistry of a coil. Pan (2016)
relaxes the former authors’ assumption that the sequence of batches
is determined prior to optimization, but do not consider detailed coil
scheduling.

A notable example that considers a greater level of detail is Baosteel,
a company that uses a mixed-integer program to schedule heats into
sequences (Tang, Meng et al., 2014; Tang & Wang, 2008). The authors
pose a 𝑝-median capacitated model to allocate slabs to batches, and
a general, multi-objective mixed-integer program to sequence heats.
Because of their intractability, the models are solved using a dynamic-
programming heuristic and tabu search, respectively. These particular
Baosteel facilities, however, decouple the casting and hot rolling pro-
cesses by moving cast products to a storage facility from which the
hot rolling mill draws to reheat and roll. This type of inventory-based
rolling mill allows casting and rolling constraints to be considered
independently. Specifically, the casting schedule only incorporates a
coil’s steel grade and casting width when assigning it to a heat (Tang
et al., 2011), resulting in model instances with thousands (versus tens
or hundreds of thousands) of variables and constraints, rendering the
resulting computation tractable with reformulation (in this case, as a
set-packing model that lends itself to column generation) and state-of-
the-art solvers (Tang, Wang et al., 2014). This advantage in scheduling,
however, comes at the cost of losing the energy efficiency associated
with a homogenizing furnace (rather than a reheating furnace) and
the extra costs associated with transporting, storing and managing slab
inventory.

A steel manufacturing facility in Austria has also adopted a mixed-
integer program for its scheduling; however, it too can place cast
slabs into inventory before sending them to the hot mill. Their ap-
proach seeks to minimize the sum of penalties associated with down
time incurred at the caster, changes in casting speed throughout a
sequence, scrap produced, and missed due dates (Missbauer et al.,
2009). Downstream of casting, ArcelorMittal’s Dofasco facility has used
mixed-integer programming to schedule its hot rolling mill, which is
Fig. 4. Complete casting process at Nucor Steel Decatur, Alabama, USA.
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also decoupled from the caster (Lopez et al., 1998). The modeling
approach is based on the traveling salesman problem in which each
coil represents a node, and there exists an arc between any two coils
that can be rolled consecutively. The cost associated with this arc is
a function of the difference in properties of the coil, which consist of
gauge, width, and hardness. Whereas in the classical formulation of
this problem, each node must be visited exactly once and subtours are
precluded, in their application, subtours (containing a single node each)
represent uncast coils, and the number of such subtours is constrained.

Tan et al. (2013) examine scheduling over the combination of the
casting and rolling processes. They assume that a slab yard can hold an
infinite quantity of work-in-process before it is sent to the rolling mill.
In this way, the processes are completely decoupled, and the sequence
of different geometries does not need to be coordinated with the
various steel compositions of the continuous-cast slabs. The objective
maximizes the amount of throughput, and the authors use a decom-
position strategy that combines math- and constraint programming to
solve instances of their model with hundreds of slabs. Mattik et al.
(2014) integrate these models by first posing one for the continuous
casting process to produce a schedule with the objective of minimizing
total slab production time (makespan) while considering the chemical
compatibility of the steel grades. A second model for the rolling process
minimizes waiting times between continuous casting and rolling. The
aggregate model quickly returns near-optimal solutions with the benefit
of reducing energy consumption, but lacks the detailed geometric
considerations we incorporate for the sake of our rolling process.

Silaen et al. (2017) report on ArcelorMittal-USA’s efforts to assign
heats to a caster that integrates casting and hot rolling. Their solution
methodology separates the model into three sub-problems (i.e., order
selection, assignment of orders to casters, and scheduling the orders on
the casters), the first two of which are solved using a heuristic while
the remaining sub-problem is solved to optimality. In essence, sets of
‘‘good’’ heats are first determined, and then the heats are grouped into
schedules. Because decisions (upon which the quality of the solution
to the previous sub-problem depends) are heuristically determined,
global optimality cannot be proven; however, a near-optimal solution
to the monolith may be quickly constituted from the solutions of several
sub-problems (Harjunkoski & Grossmann, 2001).

Riccardi et al. (2015) consider environmental incentives for pro-
duction both in integrated facilities and in minimills, but no detailed
production scheduling models are determined. At a systems level, Ray
and Kim (1995) analyze costs in the steel industry. Regarding distribu-
tion, Rosyidi et al. (2021) examine a supply chain problem in the steel
industry consisting of the integration of supplier-side and buyer-side
decisions. Their model maximizes profit while adhering to constraints
on capacities, supplies, demands, and inventory balance. No detailed
operational decisions at the scheduling stage are considered, however.
Similarly, Fukuyama et al. (2021) present a high-level survey regarding
the utilization of iron and steelmaking facilities in China. A complete
review of scheduling models related to integrated steel production can
be found in Tang et al. (2001), and Özgür et al. (2021) survey planning
and scheduling models for hot rolling mills.

This paper presents the first coil-based model of steelmaking, con-
tinuous casting and rolling with 100% direct-charge operations. By
contrast, heat-based models, which dominate the literature at the time
f this writing, lack the ability to effectively intertwine the macro-
evel, grade-based decisions for each heat that are important at the
aster, and the various geometric decisions at the coil level that the
ollers must consider. In fact, we show in Section 5.2 that trying to
ptimize these processes separately, while fast, leads to suboptimal,
r even infeasible, solutions. Our contributions, therefore, lie in the
evelopment of methodologies to expedite solutions to this more com-
lex coil-based model in which both chemistry-related decisions at the
aster and geometric decisions for the rollers must be made in tandem.
ection 3 introduces a model to determine the order in which coils are
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ast such that they constitute valid heats, consider intermix between
grades, and conform to rules regarding geometries of consecutive and
adjacent coils. In Section 4, we introduce several techniques to improve
model tractability, including: (i) variable elimination and efficient for-
mulation, (ii) deployment of appropriate big-m values, and (iii) cutting
planes. Section 5 reports numerical results regarding solution time and
quality, and compares schedules obtained with our model, a heuristic,
and two decoupled approaches for Nucor Steel’s operations. Section 6
concludes.

3. Coil-based model formulation

To construct a model sufficiently general to schedule both steel-
making and casting in conjunction with hot rolling in a 100%-direct-
charge-facility, sequencing rules between adjacent coils must hold;
this requires a coil-based model, in addition to heat-based constraint
satisfaction enforced in previous heat-based models. Each sequence is
partitioned into separate rolling campaigns, and each time a roller
stand change occurs, we assume that all roll stands are changed to
reset the capacity of the finishing mill, and therefore the geometric
coil constraints. Relationships for defining the order of production of
a sequence of coils are established by segmenting it into notional,
spatial ‘‘slots’’ – equal to half of the number of coils, in which coils,
given an arbitrary index number, can be placed. A slot contains two
coils, each cast at the same time on one of the two casters to allow
for the comparison of parameter values of adjacently cast coils (see,
e.g., Pinto & Grossmann, 1998 for this framework). In this section, we
mathematically develop the scheduling model for the process described
in Section 1.

Before progressing to the full model formulation, we present a sim-
ple example with ten coils and two casters to illustrate the complexity
of this scheduling problem. Although adjacently cast coils may be of dif-
ferent grades as prescribed by the casting process, these same coils must
adhere to the geometric rules enforced in the rolling process; this fol-
lows from the fact that the mill contains two independently-run casters,
but a single set of rollers onto which both casters alternate deposit-
ing heats of in-progress steel. Therefore, between roller changes, coil
widths and gauges are expected to be monotonically non-increasing and
should include no exceptionally large decreases. Consider a ‘‘simple’’
order of ten coils, consisting of three grades (see Table 1).

Rules in the casting process dictate that we cannot switch grades
within a heat on either caster. Moreover, switching grades between
heats, if even feasible, incurs a cost that depends on the two adjacent
grades. Because our example involves three grades, with four coils
of one grade and three coils each of the other two, at least one
grade change must occur on each of the casters in order to fill the
five slots with coils and construct a ten-coil schedule. Based on the
interaction between the two casters and single roller, the coils exiting
each caster must merge into a feasible rolling sequence (based on ge-
ometric constraints), with the ability to reset the geometric constraints
(i.e., increase width and/or gauge) after a roller change. Coils in our
small example (see Fig. 5) are labeled with their coil number from
Table 1; grades are indicated by color (grade 1 = blue; grade 2 =

Table 1
Small ten-coil example.

Coil Grade Width (in) Gauge (in)

1 1 50 0.08
2 1 47 0.06
3 1 49 0.08
4 1 48 0.06
5 2 48 0.06
6 2 49 0.08
7 2 49 0.08
8 3 48 0.06
9 3 49 0.08
10 3 49 0.08
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Fig. 5. Visualization of the small 10-coil, 2-caster, 3-grade example as given spatially; note that time is irrelevant for the purposes of the schedules we provide.
Table 2
Sets.

Sets Description

 coils
 grades
 = {1, 2} casters
 = {1,… , ||∕2} slots on each caster
𝑚𝑖𝑙𝑙 , 𝐻𝑅𝐵 , 𝑐𝑢𝑡 subset of coils with edge-type mill, HRB, and cut, respectively
̂ subset of coils for which a roller change could occur

red; grade 3 = violet); order width is indicated by the base width of
the slabs; gauge is indicated by the height of the slabs; grade changes
in the casters and roller changes in the rolling mill are indicated by
vertical dashed lines; and, sequencing from the two casters into the
rolling schedule is indicated by the arrows. Our depiction provides a
relative ordering between the coils, but omits the element of time,
because the mill operators regard the problem spatially; indeed, the
operation may be sped up or slowed down depending on last-minute
changes required in the properties of the steel (outside the scope
of our work). Although Fig. 5 illustrates a feasible schedule (where
feasibility is nontrivial based on the need to adhere to several different
geometric sequencing rules), it incurs seven grade changes among ten
coils. Although not obvious in this small example, a reorganization of
coils in larger schedules might reduce the number of grade changes
while still satisfying constraints related to geometrical considerations.
If not, the mill is willing to incur trim loss at a penalty by casting
coils wider than their order width to preserve the monotonically-non-
increasing coil width rule. (Note that this same rule cannot be applied
to gauge and that, when applied to width, the exact implementation
depends on three different width flexibility specifications from the
customer.) The consideration of these various chemical and geometric
rules, combined with the flexibility for the rules to be broken with a
roller change and customer width specifications, renders this problem
exceedingly complex, even for a modest number, e.g., 40, of coils in a
rolling campaign.

The level of detail in our scheduling problem requires the intro-
duction of the following notation: (i) sets (in Table 2) categorize steel
grades and edge requirements specified in customer orders, casters
and rollers in the mill, and slots available to be scheduled; and, (ii)
parameters (in Table 3) prescribe the characteristics of each customer
order such as the finished coil grade, order width, gauge, and length
(which together define the dependent parameter coil weight according
to the geometry and steel density). Finally, Table 4 introduces contin-
uous, non-negative variables (in black font) describing coil width and
gauge characteristics, and binary variables (in red font) defining coil
sequencing and coil order characteristics.

In summary, we consider a set of || coils, || grades, and ||
casters, where each caster contains || slots. Each coil, as a result of
customer order specifications, possesses a desired grade, gauge (thick-
ness), and width, where the latter characteristic is complicated by the
fact that the order width may differ from the cast width based on a
500
Table 3
Parameters.

Parameter Description Units

Width-Based
𝑤𝑐 order width of coil 𝑐 [in]
𝑤̂ allowed width excess for each coil [in]
𝑤̂ extra allowed width excess for cut-edge coils [in]
𝑤 additional minimum width excess for mill-edge coils

when using alternative bounds
[in]

𝑤̄ additional maximum width excess for mill-edge coils
when using alternative bounds

[in]

𝑤𝑈
𝑐 upper limit on the cast width of coil 𝑐 [in]

𝑤̃ allowed inter-caster width difference without penalty [in]
Degradation-Based
𝑑𝑐 degradation of the roller associated with coil 𝑐 [fraction]
𝑑 maximum degradation allowed on a roller [≤ 1]
Heat-Based
𝑇̄ , 𝑇 upper and lower weight limits for a heat, respectively [tons]
𝑡𝑐 weight of coil 𝑐 [tons]
Chemistry-Based
𝛾𝑔𝑔′ penalty cost of a transition from grade 𝑔 to 𝑔′ [$]
𝑔𝑐 ∈  grade of coil 𝑐 [–]
Gauge-Based
𝑎𝑐 gauge of coil 𝑐 [in]
𝑎𝑐 limit on minimum gauge for the subsequently cast coil

without a penalty, given by the following formula:
[in]

𝑎𝑐 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.5 ⋅ 𝑎𝑐 , 𝑎𝑐 ≥ 0.4

0.75 ⋅ 𝑎𝑐 , 0.4 > 𝑎𝑐 ≥ 0.123

0.9 ⋅ 𝑎𝑐 , 𝑎𝑐 < 0.123

Table 4
Variables.

Variable Description Units

Continuous Non-negative Variables:
𝐷𝑠 cumulative degradation of current roller by slot 𝑠 [%]
𝑇𝑘𝑠 cumulative tonnage of current heat by slot 𝑠 on caster 𝑘 [tons]
𝑊𝑘𝑠 cast width of the coil assigned to caster 𝑘 slot 𝑠 [in]
Binary Variables:
𝐵𝑐 1 if a mill-edge coil 𝑐 uses its alternative cast-width bounds,

0 otherwise
𝐺𝑘𝑠 1 if a grade change occurs between the coils assigned to

caster 𝑘 slot 𝑠 and 𝑠 + 1, 0 otherwise
𝐻𝑘𝑠 1 if there is a heat change on caster 𝑘 in slot 𝑠, 0 otherwise
𝑋𝑘𝑠𝑐 1 if coils 𝑐 is assigned to caster 𝑘 in slot 𝑠, 0 otherwise
𝑌𝑠 1 if there is a roll change at slot 𝑠, 0 otherwise

‘‘trim condition,’’ which includes three varieties: (a) ‘‘cut edge’’ coils,
in which the coil must be trimmed, (b) ‘‘HRB’’ (or hot-rolled-black)
coils, which are hot-rolled and shipped with as-cast black edges, and
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(c) ‘‘mill edge’’ coils for which trimming can be chosen, as desired, to
satisfy other scheduling constraints. At a system level, rollers degrade
as a function of coils passing through them, and we track this, and
the resulting change-outs. Additionally, each heat must adhere to a
minimum and maximum tonnage. The quality of a schedule is char-
acterized by the process dynamics: (a) operational limitations, such
as ladle and roller capacity, (b) product quality constraints, such as
those involving width variations between consecutively cast coils on
the same caster, and adjacently cast coils between the two casters, (c)
penalties associated with grade intermix and trim loss, and (d) penalties
associated with risk, such as excessive gauge drops that could lead to
rolling-mill cobbles.

We now state the full model, which we term (𝐌), in which the
bjective is implicit. That is, we minimize the weighted sum of viola-
ions of each soft constraint, i.e., constraint that can be violated using
continuous-valued elastic variable, where these are denoted by a dot

ver the relational operator. Ultimately, the objective function consists
f a weighted sum of these elastic variables, where the relative weights
re given in Table 7 of Section 5. Any constraints containing a variable
ith an index of 𝑠 − 1 hold only for the case in which the slot number

s strictly greater than 1.
(𝐌) subject to:
(see Section 3.1: Valid Assignment)

∑

𝑘∈

∑

𝑠∈
𝑋𝑘𝑠𝑐 = 1 ∀𝑐 ∈  (1a)

∑

∈
𝑋𝑘𝑠𝑐 = 1 ∀𝑘 ∈ , 𝑠 ∈  (1b)

(see Section 3.2: Cast Width)

𝑘𝑠 − 𝑤̂ ≤ 𝑊𝑘,𝑠+1 ≤ 𝑊𝑘𝑠 ∀𝑘 ∈ , 𝑠 ∈  ∶ 𝑠 < |𝑆| (2a)

𝑊1𝑠 −𝑊2𝑠| ≤̇ 𝑤̃ ∀𝑠 ∈  (2b)
∑

∈
𝑤𝑐 ⋅𝑋𝑘𝑠𝑐 ≤̇ 𝑊𝑘𝑠 ≤

∑

𝑐∈
𝑤𝑈

𝑐 ⋅𝑋𝑘𝑠𝑐 ∀𝑘 ∈ , 𝑠 ∈  (2c)

𝑐 ⋅𝑋𝑘𝑠𝑐 +𝑤 ⋅ 𝐵𝑐 ≤ 𝑊𝑘𝑠 ≤ 𝑤𝑐 ⋅𝑋𝑘𝑠𝑐 + 𝑤̄ ⋅ 𝐵𝑐 + 𝑤̂ + m(1 −𝑋𝑘𝑠𝑐 )

∀𝑘 ∈ , 𝑠 ∈  , 𝑐 ∈ 𝑚𝑖𝑙𝑙 (2d)

(see Section 3.3: Roller Changes)

𝑌1 = 1 (3a)

𝑌𝑠 ≤
∑

𝑐∈̂

𝑋𝑘𝑠𝑐 ∀𝑘 ∈ , 𝑠 ∈  (3b)

∑

∈
𝑌𝑠 ≤̇ 1 (3c)

𝑠 ≥ max{𝐷𝑠−1 +
∑

𝑘∈

∑

𝑐∈
𝑑𝑐 ⋅𝑋𝑘𝑠𝑐 − m ⋅ 𝑌𝑠,

∑

𝑘∈

∑

𝑐∈
𝑑𝑐 ⋅𝑋𝑘𝑠𝑐} ∀𝑠 ∈ 

(3d)

(see Section 3.4: Heats)

𝑘,1 =
∑

𝑐∈
𝑡𝑐 ⋅𝑋𝑘,1,𝑐 ∀𝑘 ∈  (4a)

∑

∈
𝑡𝑐 ⋅𝑋𝑘𝑠𝑐 + 𝑇𝑘,𝑠−1 − m ⋅𝐻𝑘𝑠 ≤ 𝑇𝑘𝑠 ≤

∑

∈
𝑡𝑐 ⋅𝑋𝑘𝑠𝑐 + min{𝑇𝑘,𝑠−1,m ⋅ (1 −𝐻𝑘𝑠)} ∀𝑘 ∈ , 𝑠 ∈  (4b)

⋅𝐻𝑘𝑠 ≤ 𝑇𝑘,𝑠−1 ≤ 𝑇̄ + (𝑇𝑘𝑠 −
∑

𝑐∈
𝑡𝑐 ⋅𝑋𝑘𝑠𝑐 ) ∀𝑘 ∈ , 𝑠 ∈  (4c)

(see Section 3.5: Grade Changes)

𝑔1 ,𝑔2 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑐∈
𝑔𝑐=𝑔1

𝑋𝑘𝑠𝑐 +
∑

𝑐′∈
𝑔𝑐′ =𝑔2

𝑋𝑘,𝑠+1,𝑐′ − 1

⎞

⎟

⎟

⎟

⎠

=̇ 0 ∀𝑘 ∈ , 𝑠 ∈ ; 𝑔 , 𝑔 ∈  ∶ 𝑔 ≠ 𝑔 (5a)
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1 2 1 2
𝑘𝑠 ≥
∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘𝑠𝑐 +
∑

𝑐′∈
𝑔𝑐′≠𝑔

𝑋𝑘,𝑠+1,𝑐′ − 1 ∀𝑘 ∈ , 𝑠 ∈ ; 𝑔 ∈  (5b)

𝑘𝑠 ≤ 𝐻𝑘𝑠 ∀𝑘 ∈ , 𝑠 ∈  (5c)

𝑘𝑠 ≥
∑

𝑐∈
𝑡𝑐 ⋅𝑋𝑘𝑠𝑐 − m ⋅ (1 − 𝐺𝑘𝑠) ∀𝑘 ∈ , 𝑠 ∈  (5d)

(see Section 3.6: Excessive Gauge Decrease)
∑

∈
𝑎𝑐 ⋅𝑋𝑘𝑠𝑐 −

∑

𝑐′∈
𝑎𝑐′ ⋅𝑋𝑘,𝑠+1,𝑐′ =̇ 0 ∀𝑘 ∈ , 𝑠 ∈  (6)

(see Section 3.6.1: Variable Bounds)

0 ≤ 𝐷𝑠 ≤ 𝑑 ∀𝑠 ∈  (7a)

0 ≤ 𝑇𝑘𝑠 ≤ 𝑇̄ ∀𝑘 ∈ , 𝑠 ∈  (7b)

𝑊𝑘𝑠 ≥ 0 ∀𝑘 ∈ , 𝑠 ∈  (7c)

𝐵𝑐 , 𝐺𝑘𝑠,𝐻𝑘𝑠, 𝑋𝑘𝑠𝑐 , 𝑌𝑠 binary ∀𝑐 ∈ , 𝑘 ∈ , 𝑠 ∈  (7d)

We attempt as compact a formulation as possible, recognizing that
both the number of slots and the number of coils can be large for
realistic instances and, therefore, any binary variable containing both of
these instances is likely to contribute significantly to the intractability
of the model. A natural formulation might use binaries that track
adjacent coils and/or that consider roller-slot-coil-caster combinations,
but we seek to avoid such formulations. Instead, we do not include a
roller index on any variable; rather, we implicitly account for ‘‘badness’’
between any two consecutively cast coils using continuous variables
and low-indexed binaries.

3.1. Valid assignment

Constraint (1a) ensures that each coil is cast on exactly one caster
and appears in exactly one slot. Constraint (1b) guarantees that each
caster-slot pair possesses a coil, which assumes that both casters are
operational when the schedule is implemented.

3.2. Cast width

These constraints relate to the characteristics of a coil within con-
secutive slots (such as a decrease in width with increasing slot number)
and to coil characteristics (such as lower and upper bounds on the cast
and order width). We use a continuous variable to monitor the width
of a coil in a slot on a given caster by simply tracking the width of a
caster-slot pair (without the coil index). Each coil 𝑐 ∈  has an order
width 𝑤𝑐 . All coils, except cut edge, can be cast within the standard
range [𝑤𝑐 , 𝑤𝑐+𝑤̂]. Coils requiring a cut-edge must be cast with a relaxed
upper bound on width of 𝑤𝑐+𝑤̂+𝑤̂. By contrast, mill-edge coils can be
either within the standard range [𝑤𝑐 , 𝑤𝑐 + 𝑤̂] or within an alternative
range [𝑤𝑐 + 𝑤,𝑤𝑐 + 𝑤̂ + 𝑤̄], which includes the minimum trim of 𝑤̄
required by the guide rolls during the trimming operation. (Hot-rolled-
black edge coils must be cast strictly within the American Society for
Testing and Materials standards, which allow for final width to increase
relative to order width by up to 𝑤̂.)

We impose the following two relationships between casters and
slots: (i) constraint (2a) ensures that, for a given caster and slot,
the cast width in that slot must be between a maximum allowable
width decrease and the width contained in the previous slot; and,
(ii) constraint (2b) requires that for the same slot on the two casters
(i.e., adjacent slots) the width difference not exceed a given tolerance.
We linearize this latter constraint in the implementation, and allow it
to be violated (up to a limit) with a penalty. Constraint (2c) relates
the width for a slot-caster combination to the product of the binary
representing whether or not a specific coil is cast in that slot and the
parameter representing the width of a coil. The lower limit is elasticized
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at a penalty; the upper limit enforces a hard constraint where the
coefficient is given by:

𝑤𝑈
𝑐 =

⎧

⎪

⎨

⎪

⎩

𝑤𝑐 + 𝑤̂ 𝑐 ∈ 𝐻𝑅𝐵

𝑤𝑐 + 𝑤̂ + 𝑤̂ 𝑐 ∈ 𝑐𝑢𝑡

𝑤𝑐 + 𝑤̂ + 𝑤̄ 𝑐 ∈ 𝑚𝑖𝑙𝑙

The cast width of a mill-edge coil must be between a lower limit 𝑤
and an upper limit 𝑤̄ according to constraint (2d), as long as a given
coil is assigned to that caster-slot location. The number of constraints
considering both inequalities in (2d) is (||2), which produces a large
number of constraints if most coils are mill edge.

3.3. Roller changes

Constraint (3a) enforces the initial condition that there is a roller
change in the first slot. Constraint (3b) allows a roller change only in
slots where coils that belong to the set ̂ are placed. Elastic constraint
(3c) counts each roller change after the first and penalizes it accord-
ingly. For a degradation model that depends solely on the number of
coils passed through the rollers, this is a constant. For an accumulated
degradation model that depends on the sequence of coils, this number
can vary (Udofia et al., 2023). Constraint (3d) records degradation for
a given slot as a function of the coil in it across both casters; if there
is no roller change in that slot (i.e., 𝑌𝑠 = 0), roller degradation is
accumulated. However, if there is a roller change, the first argument
of the maximization function is void and the roller degradation is
determined only by the coil in the slot following the change, given as
the second argument.

3.4. Heats

Constraint (4a) records the weight (tonnage) of the coil in slot 1
for each caster. With no grade change, for all slots except the first,
constraint (4b) equates aggregate tonnage on a given caster with the
sum of that accumulated in the previous slots and the contribution from
the currently considered slot; otherwise, it imposes an upper bound
which is then reset to the tonnage from the currently considered slot.
The tonnage of a given grade of steel at heat boundaries is accounted
for in constraint (4c). Specifically, the lower limit forces a minimum
tonnage of a given grade before a heat change occurs to preclude
underweight heats. The upper limit accounts for ‘‘spillover’’ between
heats of the same grade; overcast tonnage of a given heat in slot 𝑠 can
be offset if there exists capacity in the previous slot; this part of the
constraint is obviated when a grade change occurs.

3.5. Grade changes

Computationally expensive constraints (5a) record a grade change
for coils with differing grades cast in adjacent slots. Constraint (5b)
counts grade changes on each caster and in each slot as a function of
the coils cast. Constraint (5c) forces a heat change with a grade change.
Constraint (5d) overrides (4c), which, together with (4b), imply that,
post grade change, the heat tonnage in the slot matches the tonnage of
its assigned coils, precluding spillover from the previous heat.

3.6. Excessive gauge decrease

Constraint (6) penalizes excessive gauge decrease. There is no
penalty on gauge increase between coils in consecutive slots.

3.6.1. Variable declarations
Finally, we require that the domains of our model variables be

restricted appropriately.
502
4. Methodology

We introduce several techniques to improve the tractability of (𝐌),
ncluding: (i) variable elimination and efficient formulation, (ii) the
eployment of appropriate ‘‘big-m’’ values, and (iii) cutting planes. An

initial feasible solution provided prior to the initiation of the branch-
and-bound algorithm can result in tractability gains (Klotz & Newman,
2013). Allen et al. (2022) have constructed such a solution using a
heuristic approach. However, this solution did not universally aid the
branch-and-bound search, despite resulting in a feasible solution for
the monolith. Other attempts based on a fix-and-relax heuristic (Pochet
& Wolsey, 2006) did not necessarily yield even a feasible solution.
Therefore, our numerical experiments do not warm-start the solver.

4.1. Variable elimination

A natural sequencing formulation would explicitly track not only
the slot and caster on which each coil is cast, but also the adjacent
coil in that location. In this way, it is easy to account for the differ-
ence in geometric, as well as composition, processing, and operational
risk characteristics that induce penalties. However, the corresponding
variable would result in (||2||||) binaries, which would populate

ost constraints. Additionally, it would be more natural to account
or the roller on which a coil is cast, in a given slot and on a given
aster. This would result in (||||||||) variables, where  defines
he set of rollers. For even a 100-coil model with two casters and
everal rollers, the ‘‘more natural’’ formulation would result in millions
f variables and constraints. We therefore: (i) eliminate the roller index
ltogether and explicitly track degradation; (ii) remove consecutive
oil articulation from the indices and implicitly account for ‘‘badness’’
etween adjacent coils using continuous variables, and (iii) retain a
inimal set of binaries that account for roller, heat and grade changes

etween slots (where the former is only a function of slot and not of
aster), differences in cast- versus order-width, and the location of a
oil in a caster and slot. We can further reduce the number of variables
sing so-called ‘‘indexed sets’’ that a priori preclude: (i) grade changes
n certain, e.g., ‘‘early’’ or ‘‘late,’’ slots; (ii) heat changes between
ertain slots, e.g., when there are no grade changes; (iii) roll changes
arly or late in the campaign; and, (iv) coil assignment to certain slots
ased on factory rules.

Specifically, regarding plant rules, experience dictates that the high-
st quality products are cast after the first, and before the last, few heats
f a sequence. The head and the tail of a cast sequence have higher
efect rates based on steel cleanliness studies (Zhang & Thomas, 2003).
herefore, coils with lower quality and cleanliness requirements are
cheduled early and late in the sequence (Luecking & Jannasch, 2008).
t Nucor, categories in which coils can be placed are dictated by the
uality requirements that an end-user specifies for a particular coil.

.2. Big-m determination

Based on physical limitations of the casting and rolling processes, as
ell as American Society for Testing and Materials standards, we are
ble to tune big-m values as given in Table 5.

Table 5
Values for m.

Constraint
number

Value for m Rationale

(2d) 𝑤𝑐 Maximum coil width when 𝑋𝑘𝑠𝑐 = 0 as given by the
expression for 𝑤𝑈

𝑐 in Section 3.2
(3d) 1 Maximum degradation on a roller before changing
(4b) 𝑇̄ Maximum tonnage in a heat
(5d) 𝑇̄ Maximum tonnage in a heat
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4.3. Cutting planes

Finally, we derive valid inequalities to strengthen the model, neces-
sitating the introduction of additional notation (shown in Table 6).

Table 6
Sets, parameters and variables for cutting planes.

Object Description Units

Sets
̄ subset of grades for which we compute a minimum grade

transition cost
𝛺 set of potential values for arbitrary widths used in clique

constraints
𝜔, ̄𝜔 sets of coils for which 𝜔 is an upper or lower bound on the

cast width limits, respectively
Parameters
𝛾̄ minimum grade transition cost over the subset ̄ [$]
𝜔 arbitrary width used in clique constraints [in]
Variables
𝛤𝑘𝑠 grade change cost for slot 𝑠 on caster 𝑘 [$]
𝐺̄𝑘𝑠𝑔1𝑔2 1 if a grade change occurs between the coils assigned to

caster 𝑘 slot 𝑠 and 𝑠 + 1 from grade 𝑔1 to grade 𝑔2, 0
otherwise

𝑍𝑘𝑔 1 if a coil of grade 𝑔 is assigned to caster 𝑘, 0 otherwise
𝑃 𝜔
𝑠 1 if any coil in ̄𝜔 is scheduled in slot 𝑠, 0 otherwise

4.3.1. Trivial bounds

∑

𝑠∈
𝑌𝑠 ≥

⌈
∑

𝑐∈ 𝑑𝑐
𝑑

⌉

(8)

∑

𝑘∈

∑

𝑠∈
𝐺𝑘𝑠 ≥ || − || (9)

∑

𝑠∈
𝐻𝑘𝑠 ≥

⌈
∑

||
𝑖=1 𝑡(𝑖)
𝑇̄

⌉

− 1 ∀𝑘 ∈  (10)

∑

𝑠∈
𝐻𝑘𝑠 ≤

⎡

⎢

⎢

⎢

∑2⋅||
𝑖=𝑠+1 𝑡(𝑖)
𝑇

⎤

⎥

⎥

⎥

− 1 ∀𝑘 ∈  (11)

Valid inequality (8) represents the minimum number of roller
changes necessary based on the total degradation caused by all the coils
scheduled in the rolling campaign. Similarly, (9) imposes a lower bound
on the number of grade changes as a function of the number of grades
in the campaign and casters in the mill. Cut (10) limits the minimum
number of heats based on the weight of each coil where 𝑡(𝑖) are the coil
onnages, sorted increasing by weight; because (10) imposes a bound
or each caster, we account for the fact that the heaviest coils could all
e on either caster. We place an upper bound on the same sum as in
11). The minimum and maximum number of grade changes in each
ase is one fewer than the bound on the total number of heats.

.3.2. Improving the bounds on grade changes
Because the cost to change grades constitutes the majority of the

enalty in the objective, we find it advantageous to better align the
inear programming relaxation objective with that of the integer pro-
ram using additional binary variables. To measure the cost explicitly,
e let:

𝑘𝑠 ≥ 𝛾𝑔1𝑔2 ⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑐∈
𝑔𝑐=𝑔1

𝑋𝑘𝑠𝑐 +
∑

𝑐′∈
𝑔𝑐′ =𝑔2

𝑋𝑘,𝑠+1,𝑐′ − 1

⎞

⎟

⎟

⎟

⎠

∀𝑘 ∈ , 𝑠 ∈ ; 𝑔1, 𝑔2 ∈  ∶ 𝑔1 ≠ 𝑔2 (12)

and introduce extended binaries 𝐺̄𝑘𝑠𝑔1𝑔2 ∈ {0, 1} indicating whether a
grade change from grade 𝑔1 to 𝑔2 occurs in slot 𝑠 on caster 𝑘. We then
replace constraint (12) with:

𝐺̄𝑘𝑠𝑔1𝑔2 ≥
∑

𝑐∈
𝑋𝑘𝑠𝑐 +

∑

𝑐′∈

𝑋𝑘,𝑠+1,𝑐′ − 1
503

𝑔𝑐=𝑔1 𝑔𝑐′ =𝑔2
∀𝑘 ∈ ; 𝑠 ∈ ; 𝑔1, 𝑔2 ∈  ∶ 𝑔1 ≠ 𝑔2 (13)

and explicitly measure the grade change cost 𝛤𝑘𝑠 ≥ 0 for each caster and
slot in which the grades in consecutive slots are different (see constraint
(5a)) as:

𝛤𝑘𝑠 =
∑

𝑔1 ,𝑔2∈
𝑔1≠𝑔2

𝛾𝑔1𝑔2 ⋅ 𝐺̄𝑘𝑠𝑔1𝑔2 ∀𝑘 ∈ , 𝑠 ∈ 

Hence, we enforce a change for each grade. Unless there are exactly
|| coils of the same grade 𝑔 (which can be cast on the same caster),
then there must be a grade transition from and/or to 𝑔:
∑

𝑘∈

∑

𝑠∈

∑

𝑔′∈
𝐺̄𝑘𝑠𝑔𝑔′ +

∑

𝑘∈

∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,||,𝑐 ≥ 1 ∀𝑔 ∈  (14)

∑

𝑘∈

∑

𝑠∈

∑

𝑔′∈
𝐺̄𝑘𝑠𝑔′𝑔 +

∑

𝑘∈

∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,1,𝑐 ≥ 1 ∀𝑔 ∈  (15)

That is, either a coil with grade 𝑔 is assigned to the end (beginning)
of a caster, or there is a transition from (to) grade 𝑔 to (from) another
grade at some slot.

Letting 𝑍𝑘𝑔 be a variable equaling 1 if a coil of grade 𝑔 is assigned
to caster 𝑘, we introduce:

𝑋𝑘𝑠𝑐 ≤ 𝑍𝑘𝑔 ∀𝑘 ∈ , 𝑠 ∈  , 𝑐 ∈  ∶ 𝑔 = 𝑔𝑐 (16)
∑

𝑘∈
𝑍𝑘𝑔 ≥ 1 ∀𝑔 ∈  (17)

The number of inequalities in (16) can be reduced with the follow-
ing reformulation:
∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘𝑠𝑐 ≤ m ⋅𝑍𝑘𝑔 ∀𝑘 ∈ , 𝑠 ∈  , 𝑔 ∈  ∶ 𝑔 = 𝑔𝑐

where m = || ∋ 𝑔𝑐 = 𝑔. Hence, we can disaggregate constraints (14)
nd (15) for each caster as follows:
∑

∈

∑

𝑔′∈
𝐺̄𝑘𝑠𝑔𝑔′ +

∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,||,𝑐 ≥ 𝑍𝑘𝑔 ∀𝑘 ∈ ,∀𝑔 ∈  (18)

∑

∈

∑

𝑔′∈
𝐺̄𝑘𝑠𝑔′𝑔 +

∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,1,𝑐 ≥ 𝑍𝑘𝑔 ∀𝑘 ∈ ,∀𝑔 ∈  (19)

Rather than forcing grade changes for each grade, because the
number of grades in a campaign is rather small (i.e., in practical
applications between two and five), we can force grade changes for
subsets of grades. To this end, we compute all possible combinations
of grades potentially appearing on a caster and the corresponding
minimum cost for each such sequence. For example, if there are three
grades {𝑔1, 𝑔2, 𝑔3} in a campaign but on a caster coils are only assigned
with grades 𝑔1 and 𝑔2 (but not 𝑔3), we can compute the minimum
grade-change cost 𝛾𝑔1 ,𝑔2 ,𝑔3 , and add a constraint:
∑

𝑠∈
𝛤𝑘𝑠 ≥ 𝛾𝑔1 ,𝑔2 ,𝑔3 ⋅

(

1 − (1 −𝑍𝑘𝑔1 ) − (1 −𝑍𝑘𝑔2 ) −𝑍𝑘𝑔3

)

∀𝑘 ∈ 

In general, for any subset of grades ̄, we can compute its associated
minimum cost:

𝛾̄ ∶= min
𝜋

|̄|−1
∑

𝑖=1
𝛾𝑔𝜋𝑖 ,𝑔𝜋𝑖+1

where this minimum is computed over all permutations 𝜋 of the ele-
ments of ̄. Then, we can add the constraints:

∑

𝑠∈
𝛤𝑘𝑠 ≥ 𝛾̄ ⋅

⎛

⎜

⎜

⎝

1 −
∑

𝑔∈̄
(1 −𝑍𝑘𝑔) −

∑

𝑔∉̄
𝑍𝑘𝑔

⎞

⎟

⎟

⎠

∀𝑘 ∈ ; ̄ ⊆  ∶ |̄| > 1
(20)
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to improve the lower bound. Although there are 2||-1 possible subsets
̄ ⊆ , because, in practice, || ≤ 5, the exponential nature of the size

does not hinder implementability.
In addition to improving the bound on the grade change cost 𝛤𝑘𝑠,

we can force a grade change for each grade appearing in a subset ̄,
strengthening valid inequalities (18) and (19):
∑

𝑠∈

∑

𝑔′∈̄
𝑔′≠𝑔

𝐺̄𝑘𝑠𝑔𝑔′ +
∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,||,𝑐

≥
⎛

⎜

⎜

⎝

1 −
∑

𝑔′∈̄
(1 −𝑍𝑘𝑔′ ) −

∑

𝑔′′∉̄
𝑍𝑘𝑔′′

⎞

⎟

⎟

⎠

∀𝑘 ∈ ,∀𝑔 ∈ ̄ (21)

∑

𝑠∈

∑

𝑔′∈̄
𝑔′≠𝑔

𝐺̄𝑘𝑠𝑔′𝑔 +
∑

𝑐∈
𝑔𝑐=𝑔

𝑋𝑘,1,𝑐

≥
⎛

⎜

⎜

⎝

1 −
∑

𝑔′∈̄
(1 −𝑍𝑘𝑔′ ) −

∑

𝑔′′∉̄
𝑍𝑘𝑔′′

⎞

⎟

⎟

⎠

∀𝑘 ∈ ,∀𝑔 ∈ ̄ (22)

That is, if grade 𝑔 appears in the subset ̄, then there must be a
transition from (to) grade 𝑔 to (from) another grade 𝑔′ also in ̄ on
the same caster, unless a coil of grade 𝑔 is in the last (first) slot of the
caster.

4.3.3. Improving the bounds on trim loss
Given the non-decreasing cast-width at each caster, and because

each coil 𝑐 can have a cast-width between 𝑤𝑐 and 𝑤𝑈
𝑐 , for each pair

of coils (𝑐, 𝑐′) such that 𝑤𝑐 > 𝑤𝑈
𝑐′ , if both are assigned on the same

caster, then 𝑐 must be sequenced before 𝑐′. Hence, the following clique
constraint forbids coil 𝑐′ from being assigned before 𝑐:

𝑋𝑘𝑠𝑐 +𝑋𝑘,𝑠′ ,𝑐′ ≤ 1 ∀𝑘 ∈ ; 𝑠, 𝑠′ ∈  ∶ 𝑠′ < 𝑠; 𝑐, 𝑐′ ∈  ∶ 𝑤𝑐 > 𝑤𝑈
𝑐′

(23)

Valid inequality (23) can be strengthened as follows: Given an arbitrary
width 𝜔, (23) is also valid replacing 𝑐′ by any coil with an upper bound
𝑤𝑈

𝑐′ < 𝜔 and replacing 𝑐 by any coil with an order width 𝑤𝑐 ≥ 𝜔. Let
𝛺 be the set of potential values for 𝜔 and let us denote 𝜔 = {𝑐 ∈  ∶
𝑤𝑈

𝑐 < 𝜔} and 𝜔 = {𝑐 ∈  ∶ 𝑤𝑐 ≥ 𝜔}. Hence, the following constraints
re valid:
∑

∈𝜔

𝑋𝑘𝑠𝑐 +
∑

𝑐′∈𝜔

𝑋𝑘,𝑠′ ,𝑐′ ≤ 1 ∀𝑘 ∈ ; 𝑠, 𝑠′ ∈  ∶ 𝑠′ < 𝑠;𝜔 ∈ 𝛺 (24)

However, including this requires (||2) constraints for each 𝜔. To
avoid this, we use an additional variable 𝑃𝜔

𝑠 ∈ [0, 1] for each potential
width 𝜔 ∈ 𝛺 and we add the following constraints:
∑

𝑐∈𝜔

𝑋𝑘𝑠𝑐 ≤ 𝑃𝜔
𝑠 ∀𝑘 ∈ , 𝑠 ∈  , 𝜔 ∈ 𝛺 (25)

∑

∈𝜔

𝑋𝑘𝑠𝑐 ≤ 1 − 𝑃𝜔
𝑠 ∀𝑘 ∈ , 𝑠 ∈  , 𝜔 ∈ 𝛺 (26)

𝑃𝜔
𝑠+1≤ 𝑃𝜔

𝑠 ∀𝑠 ∈  , 𝜔 ∈ 𝛺 (27)

So, if any coil 𝑐 ∈ 𝜔 is scheduled in slot 𝑠′ then 𝑃𝜔
𝑠 = 1 for 𝑠 ≤ 𝑠′.

If this occurs, then no coil 𝑐′ ∈ 𝜔 can be scheduled in slots 𝑠 < 𝑠′.
Hence, (25) and (26) imply (24), but with a considerable reduction in
the number of constraints.

We can compute 𝛺, the set of critical pairs of widths, in the following
way: let 𝜌 be an ordering of  such that 𝑤𝜌𝑖 ≥ 𝑤𝜌𝑖+1 , and let 𝜌 be an
ordering of  such that 𝑤𝑈

𝜌
𝑖
≤ 𝑤𝑈

𝜌
𝑖+1

. Given a coil 𝑐 with order width 𝑤𝑐 ,
we find the first coil in the ordering 𝜌 such that 𝑤𝑐 > 𝑤𝑈

𝜌
∗
. Then, we

ind the last coil in the ordering of 𝜌 such that 𝑤𝜌∗ > 𝑤𝑈
𝜌
∗
. We call

this pair of coils (𝜌∗, 𝜌∗) a critical pair and we add 𝜌∗ to the set 𝛺.
In the worst case, the set 𝛺 can be equal to the set of order widths
{𝑤𝑐 ∶ 𝑐 ∈ }, resulting in constraints similar to the number in (24).
However, in practice, the number is much smaller (between 4 to 12
different values in our instances).
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Table 7
Values for objective function penalties, scaled relative to the smallest, trim loss.

Penalty name Value of penalty Units Constraint

Roller change 13.3 $ per change (3c)
Trim loss 1 $ per inch (2c)
Intercaster width difference 6.6 $ per inch (2b)
Grade-to-grade change 6.6–50 $ per grade change (5a)
Excessive gauge decrease 166.6 $ per inch (6)

Table 8
Width specifications, given in inches.
𝑤̃ 𝑤̂ 𝑤̂ 𝑤 𝑤̄

2 0.5 5 1.5 6

Table 9
Description of cut experiments.

Type Description Cut numbers

Grade-change Cuts
Type 0 (𝐌) from Section 3 –
Type 1 (𝑀) + 𝐺̄𝑘𝑠𝑔1𝑔2 variables and enforcing grade changes (14)–(15)
Type 2 As Type 1, but +𝑍𝑘𝑔 variables (18)–(19)
Type 3 (𝑀) +𝑍𝑘𝑔 variables, and improving costs for

subsets of grades
(20)

Type 4 As Type 2, and improving costs for subsets of
grades

(21)–(22)

Trim-loss Cuts
Critical Pairs Cliques and using 𝑃 𝜔

𝑠 variables (25)–(27)

5. Computational experiments

We code Model (𝐌) in Python 3.7 and solve its instances using
Gurobi 9.0.2. We use the solver parameter settings MIPFocus=2 and
Symmetry=2, as suggested by Gurobi’s tuning procedure on the small
nstances of (𝐌). Additionally, we turn off solver-generated cuts; with-
ut the confounding effects, solve times for those instances that attain
ptimality can be up to twice as fast. The computers employed for the
xperiments use CentOS Linux v7.6.1810 on x86 64 architecture, with
our eight-core Intel Xeon E5-2670 processors and 128 GB of RAM. The
odel and sample data sets can be found here: https://github.com/

orelian/TorresEtAl2023.
Scaled objective function penalties are given in Table 7, and width

nformation pertinent to all runs is given in Table 8; tonnages of each
oil range between 20 and 40 and, as mentioned previously, complete
eats contain between 150 and 170 tons. We compare the relative
fficacy of the cuts derived in Section 4.3 according to the combinations
iven in Table 9.

.1. Small instances

We construct small instances containing between 28 and 38 coils us-
ng subsets from larger instances (containing about 150 coils) for which
here are known, feasible solutions, in particular, complete heats. That
s, the larger solutions contain sufficient coils such that complete heats
an be constituted and coil characteristics are relatively comparable,
.g., there are no extreme differences in gauge or width. These instances
ontain hundreds of constraints and thousands of variables (both before
nd after presolve). We provide details regarding the number of grades,
he number of each coil cut type, the difference between the smallest
nd largest widths and gauges, and the number of critical pairs in
able 10. These small studies compare the impacts of including the
arious cuts for instances that solve within an hour to the solver’s
efault optimality tolerance to determine how much of an impact the
uts have specifically in tightening the lower bound, which, we believe,
ven for the larger instances which cannot solve to optimality, affects
he provable quality of the solution to a greater extent than the solution

tself.

https://github.com/borelian/TorresEtAl2023
https://github.com/borelian/TorresEtAl2023
https://github.com/borelian/TorresEtAl2023
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Fig. 6. Upper and lower bounds, normalized with respect to the optimal objective value, as a function of solution time for the small instances (with critical-pair cuts).
Table 10
Description of small instances.

|| |𝑚𝑖𝑙𝑙
| |𝐻𝑅𝐵

| |𝑐𝑢𝑡
| min

𝑐
{𝑤𝑐} max

𝑐
{𝑤𝑐} min

𝑐
{𝑎𝑐} max

𝑐
{𝑎𝑐} |𝛺|

In
st

an
ce

s

I1 1 8 0 22 37.6 47.5 0.08 0.19 1
I2 2 2 0 28 49.5 64.4 0.10 0.20 3
I3 2 7 0 23 38.0 54.6 0.07 0.26 2
I4 3 25 0 5 60.1 65.4 0.08 0.31 0
I5 2 5 25 0 43.9 54.8 0.08 0.24 3
I6 2 15 11 4 48.4 55.4 0.07 0.21 3
I7 2 19 0 19 50.1 50.3 0.10 0.18 0
I8 3 1 0 27 51.4 57.2 0.12 0.24 1

I9 2 7 0 21 57.9 62.7 0.08 0.27 0
Table 11
Solve time for small instances, normalized with respect to the absolute solve time given in the second column.

without critical-pair cuts with critical-pairs cuts
Solution Grade-change cut type: Grade-change cut type:

time (sec.) 0 1 2 3 4 0 1 2 3 4

In
st

an
ce

s

I1 77 1.00 0.96 0.99 0.95 0.96 0.52 0.54 0.54 0.52 0.52
I2 651 1.00 0.21 0.25 0.32 0.37 0.02 0.06 0.02 0.01 0.02
I3 55 1.00 3.03 0.87 2.28 0.90 0.19 1.10 0.82 0.28 0.87
I4 1,618 1.00 4.18 0.02 4.45 0.09 1.02 3.95 2.44 4.45 1.41
I5 12 1.00 1.98 5.96 3.87 2.11 0.35 0.48 0.49 0.49 0.47
I6 30 1.00 0.56 0.64 1.32 0.96 0.79 0.74 0.79 1.11 1.04
I7 7, 200a 1.00 0.68 1.00 0.23 0.66 1.00 0.95 0.45 0.24 0.49
I8 7, 200a 1.00 0.52 0.33 5.96 0.21 3.23 0.29 0.36 1.07 0.10
I9 35 1.00 2.15 1.07 2.59 1.06 1.17 1.98 1.24 1.25 1.24

Arithmetic Mean 1.00 1.09 0.55 1.56 0.59 0.50 0.66 0.50 0.49 0.42
Geometric Mean 1.00 1.59 1.24 2.44 0.81 0.92 1.12 0.80 1.05 0.68

a Time limit.
Solution time to optimality is given in Table 11, where the re-
ults are normalized relative to times obtained from the corresponding
nstance of (𝐌) from Section 3, i.e., Type 0. Each instances is as-

sociated with ten different solution variations: (i) five grade-change
cut variations (including the default of no such cuts added) without
the critical-pair cuts associated with trim loss; and, (ii) five grade-
change cut variations (including the default of no such cuts added)
with the critical-pair cuts associated with trim loss. For each of these
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ten variations, we underline the one with the fastest solve time, i.e,
the one with the smallest normalized value. Fig. 6 shows the upper
and lower bounds in the branch-and-bound tree over time for the six
instances invoking different grade-change cuts (Type 0 - Type 4) using
the critical-pair cuts.

With respect to the small instances, we observe that the solve
times vary considerably from between just over 10 s to more than
1,000 s. Generally speaking, the inclusion of critical-pair cuts improves
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performance with the exception of Instances 4, 7 and 9 for which no
critical pairs exist (see last column of Table 10); there are mixed results
for Instance 6 in which there are smaller width differences between
coils, relative to the other instances. We also note that the effect of
including cut Types 1–4 is minimal (with or without critical-pair cuts)
relative to their lack of inclusion on Instance 1 because this instance
contains only one grade (see second column of Table 10). For the
other instances that contain multiple grades, critical-pair cuts without
additions, i.e., grade-change cuts of Type 0, appear to be the most
effective, when assessed in aggregate (either by arithmetic or geometric
mean), though the presence of grade-type cuts does effect a smaller
gap early on in the solves, leading one to conclude that their presence
may benefit larger instances in which the solve is stopped short of
optimality. Fig. 6 demonstrates this phenomenon and shows that the
majority of the solution time is spent tightening the bounds, rather than
determining good solutions. In the absence of critical-pair cuts, grade-
change cuts of Types 2 and 4 perform best (when considering both types
of means), indicating that when |𝛺| = 0, these are an effective option.

5.2. Large instances

These instances are indicative of the greatest number of coils that
the mill would simultaneously schedule and contain, on average, 5,000
constraints and 16,500 variables; presolve eliminates a trivial number
of constraints. This set of computational experiments compares the
benefits of using the optimization model relative to a heuristic, which,
in and of itself, is already an improvement over the manual scheduling
practice that the steel mill had used (Allen et al., 2022). Additionally,
we show how optimizing the casting and rolling processes in tandem
creates schedules that are superior to those resulting from isolating
these phases and solving them in succession. Table 12 provides de-
tails on the number of grades, the number of each coil cut type, the
minimum and maximum order widths and gauges, and the number of
critical pairs. We impose a time limit of 12 h per instance, after which
gaps are still large (about 43%, on average) but, in all likelihood– based
on the results of the computational experiments on the small instances,
owing to a weak bound.

Rather than focusing on the relative improvements from the various
cut types, we instead depict the improvements from the optimization
model (Model (𝐌)) over schedules produced by solving the casting
and rolling processes in isolation, and by the heuristic (which we call
Reference) in Fig. 7, separated by cost type and normalized to Refer-
ence. We execute the problem separation between the casters (which
emphasize chemistry) and the rollers (which emphasize geometry) in
two manners: (i) we remove the cast-width (𝑊𝑘𝑠 and 𝐵𝑐) and implicit
gauge decrease variables; the resulting model minimizes grade and
roller changes without considering the geometry required by the rolling
process; and (ii) we fix the values for the assignment of a coil in
a slot on a caster, 𝑋𝑘𝑠𝑐 , resulting from the heuristic (Reference) and
optimize over the resulting variables; this approach invariably fixes
the chemistry while optimizing the degree of freedom in the geome-
try, the width. We refer to these two contrived methods as ‘‘variable
elimination’’ and ‘‘variable fixing,’’ respectively.

For the ‘‘variable elimination method,’’ in which constraints (2a)–
(2d) and (6) are removed, grade change costs are emphasized and the
problem is considerably easier to solve; the four large instances yield
a result in a matter of minutes. However, fixing the variables to this
problem and attempting to obtain a solution for the monolith (Model
506
Fig. 7. Relative contribution of the different costs for the Reference, the ‘‘variable
fixing’’ (fixed), and Model (𝐌) solutions, where the magnitude of each cost is given
as the product of the weight from Table 7 and the value of the corresponding elastic
variable.

(𝐌)) yielded infeasibilities in three of the four instances due to the
model’s inability to satisfy the cast width constraints. Table 13 displays
the grade change and gauge decrease costs (normalized to those given
by Model (𝐌)); trim loss and intercaster width difference costs cannot
be computed in the absence of a fully feasible solution. As expected,
grade change costs are lower (all less than 1.0), but at the expense
of gauge decrease costs (averaging more than five times those in the
reference solutions) and feasibility for the monolith.

The ‘‘variable fixing’’ approach generates the same sequences as
when solving for the unfixed variables (i.e., those other than 𝑋𝑘𝑠𝑐).
The widths conform to a feasible schedule with minimized trim loss
conditioned on the values for 𝑋𝑘𝑠𝑐 . These instances also solve in min-
utes, and, while they are feasible for the monolith, they are all more
expensive than those produced by Model (𝐌).

Regarding the heuristic Reference, which also generally produces
feasible solutions, reductions in total objective function value (cost)
obtained from Model (𝐌) relative to Reference range between 20% and
40%. Greater savings in general result from reductions in the gauge and
trim loss penalties relative to the other penalties; roller change cost is
constant across solutions for all instances based on the simplistic wear
mode we use, which is independent of the sequence of coils.

To understand how Model (𝐌) obtains the savings over Reference,
we analyze Instance C in detail, where the upper panel of Fig. 8 shows
the solution to Reference and the lower panel depicts that from Model
(𝐌). Purple vertical bars indicate a roller change. For each graph, the
colored squares on top denote the grade of each coil, where those
associated with the north caster are shown above those associated with
the south caster. The Model (𝐌) solution adds grade changes on the
south caster (highlighted by the red ovals), but compensates for this
penalty by lowering those associated with gauge and width. On the
primary axis, circles and crosses denote order widths on the north and
south casters, respectively, while the dashed and solid lines denote
the cast widths on the north and south casters, respectively. Before
the roller change in particular, the optimized solution with respect
to the north caster saves considerably on trim loss associated with
mismatched order and cast widths. Finally, the blue and red lines on
the lower part of each graph represent the gauge, where the red oval
highlights a particularly excessive gauge decrease (red lines in general
denote gauge decrease), and the dashed and solid lines represent the
north and south casters, respectively. Model (𝐌)’s solution reduces the
associated cost, for example, by moving large-gauge coils with small

order widths to the end of the sequence.
Table 12
Description of large instances.

|| |𝑚𝑖𝑙𝑙
| |𝐻𝑅𝐵

| |𝑐𝑢𝑡
| min

𝑐
{𝑤𝑐} max

𝑐
{𝑤𝑐} min

𝑐
{𝑎𝑐} max

𝑐
{𝑎𝑐} |𝛺|

In
st

an
ce

s A 3 12 0 122 49.5 64.4 0.08 0.27 9
B 3 31 0 93 38.0 54.6 0.06 0.29 11
C 3 85 0 85 58.4 65.4 0.08 0.37 1
D 2 22 96 6 43.9 54.8 0.08 0.24 6
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Table 13
Costs, relative to Model (𝐌), obtained from the ‘‘variable elimination’’
method.

Instance Grade change cost Gauge decrease cost

A 0.33 3.94
B 0.36 7.73
C 0.86 6.55
D 0.50 2.98

Fig. 8. Details of scheduled solutions for Instance C, where the purple vertical bars
indicate a roller change, the squares denote grades differentiated by color with the top
string corresponding to the north caster and the bottom string corresponding to the
south caster. Circles and crosses denote order widths on the north and south casters,
respectively, while the dashed and solid lines denote the same for the cast widths. The
blue and red curves at the bottom of the graph denote the gauge on the north (solid)
and south (dashed) casters, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

We see how the dominating decisions of grade often obfuscate
the heuristic’s ability to make trade-offs between the more nuanced
decisions of width and gauge; on the other hand, although not provably
optimal, Model (𝐌) is able to take advantage of its clairvoyance to
determine better solutions with respect to geometry, often, though not
in Instance C, when the grade changes are more favorable as well.

6. Conclusions

We pose here an optimization model that produces sequences of
coils which satisfy constraints associated with heat sequences, as well
as several operational limitations and quality considerations based
on coil geometry and steel composition. Because the mill is 100%
direct-charge, the casting and rolling operations are integrated without
the ability to hold work-in-process. This results in more inextricably
intertwined decisions than accounted for in the existing literature on
steel-production optimization models. In order to generate optimal
schedules for small instances and good solutions for larger ones, we
propose a non-intuitive, but efficient, formulation and suggest cuts
which tighten it further. We demonstrate not only the efficacy of the
cuts, but also how solutions for larger instances would improve with
the use of an optimization model over a heuristic or an approach that
decouples casting and rolling decisions. The larger instances benefit
in almost all aspects of the schedule quality, but particularly with
respect to non-obvious tradeoffs that the optimization model can make
involving the coil geometries.

While our cuts close the optimality gap on the smaller instances,
provable optimality on the larger instances remains elusive owing to
their size and complexity. Future work should examine more ways to
tighten these gaps, perhaps through reformulation that would provide
more structure to the model with respect to possible grade changes,
which we hypothesize contribute most significantly to the weak bounds.
507

Nonetheless, the solutions that Model (𝐌) yields are useful in an
operational setting in that they can be obtained in an overnight run
for the next day’s worth of coils to be sequenced at a large commercial
minimill in North America; the optimization model improves not only
the manually generated schedules, but those obtained via heuristics as
well.
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