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A B S T R A C T   

Natural hazards cause major power outages as a result of spatially-correlated failures of network components. 
However, these correlations between failures of individual elements are often ignored in probabilistic planning 
models for optimal network design. We use different types of planning models to demonstrate the impact of 
ignoring correlations between component failures and the value of flexible transmission assets when power 
systems are exposed to natural hazards. We consider a network that is hypothetically located in northern Chile, a 
region that is prone to earthquakes. Using a simulation model, we compute the probabilities of spatially- 
correlated outages of transmission and substations based on information about historical earthquakes in the 
area. We determine optimal network designs using a deterministic reliability criterion and probabilistic models 
that either consider or disregard correlations among component failures. Our results show that the probability of 
a simultaneous failure of two transmission elements exposed to an earthquake can be up to 15 times higher than 
the probability simultaneous failure of the same two elements when we only consider independent component 
failures. Disregarding correlations of component failures changes the optimal network design significantly and 
increases the expected levels of curtailed demand in scenarios with spatially-correlated failures. We also find 
that, in some cases, it becomes optimal to invest in HVDC instead of AC transmission lines because the former 
gives the system operator the flexibility to control power flows in meshed transmission networks. This feature is 
particularly valuable to systems exposed to natural hazards, where network topologies in post-contingency 
operating conditions might differ significantly from pre-contingency ones.   

1. Introduction 

Network security is paramount for the well-functioning of power 
systems and for delivering reliable energy supply to consumers. A power 
outage can have catastrophic effects in the economy due to lost output, 
delayed production, and damaged infrastructure [1]. In addition, power 
outages can lead to human deaths [2]. For these reasons, power systems 
are normally planned and operated following strict standards of security 
and reliability [3]. 

Today, extreme weather events, natural hazards such as earthquakes 

and tsunamis, and physical attacks are the most common causes of major 
failures of power grids [4,5]. These exogenous events can cause simul-
taneous failures of multiple components of a power grid, increasing the 
likelihood of outages that affect broad geographical regions. 

According to a recent report by the Oak Ridge National Laboratory, 
more than 95% of electric disturbance events affecting at least 50,000 
customers between 2000 and 2016 in the US were triggered by some 
climate-related event, including severe winter storms, hurricanes, tor-
nadoes, heavy rain, heat waves, and lightning [6]. In Puerto Rico, 
Hurricane Maria in 2017 caused so much damage to the grid that some 
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people lost power for more than ten months [7]. 
Power grids in earthquake-prone areas can also be vulnerable to 

correlated component failures. For example, on February 27, 2010, a 
major earthquake affected some of the most populated areas in Chile and 
caused simultaneous failures of generation, transmission, and distribu-
tion assets, resulting in the curtailment of an equivalent of 75% of the 
annual peak demand for power in the system [8]. In 2011, Japan 
experienced the fourth strongest earthquake ever recorded in history, 
followed by a tsunami. The event triggered the disconnection of nearly 
23 GW of generation and caused multiple failures both in transmission 
and distribution systems [9]. 

As expected, these major outages due to natural disasters can be very 
costly for the economy. A study by the US President’s Council of Eco-
nomic Advisers and the US Department of Electricity Delivery and En-
ergy Reliability reports that weather-related power outages between 
2003 and 2012 have cost the US economy an average of $18 billion to 
$33 billion, but this number can increase up to $75 billion in a year with 
major weather events [10]. Consequently, investment and operation 
strategies that are effective at reducing the impact of natural disasters 
and physical attacks on the power grid can result in relatively large 
economic savings. 

Historically, power networks have been designed and operated by 
using the so-called N − k security criterion (e.g., k = 1 or k = 2), 
meaning that power systems must withstand the outage of one (k = 1) or 
two (k = 2) elements without shedding (significant volumes of) demand 
and without violating the operating limits established in security stan-
dards [3]. This security criterion, however, has been questioned for 
years because it does not properly acknowledge the probabilistic nature 
of power outages and the cost of curtailing demand [11]. For example, 
the N − 1 criterion does not recognize that long power lines may be 
more prone to fail than short lines or transformers in substations that are 
closely monitored. In addition, the N − k criterion does not necessarily 
prevent power outages that result from correlated component failures, 
which are more likely to occur than independent failures when a power 
grid is exposed to natural disasters or extreme weather events [12]. 

To cope with these limitations, there is a body of work that recom-
mends replacing deterministic standards with probabilistic (or sto-
chastic) approaches to ensure a secure design and operation of power 
networks  [3,11–19]. Under a probabilistic approach, outage risks can 
be appropriately measured and balanced against the costs of designing 
and operating the grid in a manner that could reduce such risks  [13]. 

In spite or their benefits, probabilistic models present a number of 
challenges in order to be successfully applied in practice. For example, 
probabilistic models are more complex and harder to solve and scale up 
than deterministic models with minimum security standards, such as an 
N − k requirement. The number of possible contingent states of the 
network grows exponentially with the number of network elements, 
which increases the computational complexity of probabilistic models as 
number of elements in the system goes up. Reliability data is not always 
available, especially dependencies and correlations among network 
outages that are hardly ever observed; hence outage dependencies are 
usually ignored in order to make models tractable. Also, information and 
communication technologies (ICT), protection and control systems are 
usually assumed 100% reliable. 

Part of the computational challenges that result from the use of 
probabilistic models can be addressed through model simplifications or 
decomposition algorithms. In terms of simplifications, the authors in 
[20] show different alternatives to simplify network models with secu-
rity constraints. In terms of computational algorithms to solve optimi-
zation problems, one alternative is to rely on the concept of the so-called 
“umbrella” outages and constraints that seek to identify, prior to 
running the mathematical program, a subset of relevant network out-
ages that result in the exact same solution as considering the entire set of 
outages [19,21]. Another alternative is the application of Benders 
decomposition, which has been successfully used in security analysis for 
network  [19,22] and generation investment planning [23,24]. Other 

modern solution algorithms and heuristics, such as optimization via 
simulation, have also been utilized recently [25,53]. 

In terms of the reliability of corrective control actions, there are a few 
references associated with modeling malfunctions of ICT, protection and 
control systems. Reference [26] utilizes the concept of the so-called 
hidden outages to model failures corresponding to malfunctions that 
are hidden, unrevealed until these are exposed by abnormal system 
conditions, transforming an initially benign outage into a major inci-
dent. Interestingly, such failures can be hedged by making appropriate 
decisions through probabilistic optimization models [27,28]. 

Outage dependencies and correlations have been recently gaining 
increased attention in network analysis and design. In communication 
networks, for example, various works have recognized outage de-
pendencies and correlations for reliable operation and design  [29–33]. 
In power systems, outage dependencies and correlations are also gaining 
attention because system operators have become more aware of the risks 
associated with natural hazards [12]. The current literature usually 
models simultaneous outages like a series of outages that cascade very 
rapidly across the system. This is the case of models such as those 
explained in [34–36], in which several power flow simulations are un-
dertaken after triggering an initial network outage that can overload 
other parts of the network and so cascade into a major event. A sto-
chastic optimization model for network investment, however, requires 
encapsulation of the above mentioned series of outages into a scenario 
tree [37]. Such scenario tree should describe the final state of the system 
after outages occur. In this vein, a series of cascading outages can be 
represented by a single contingent state of the system where multiple 
elements failed simultaneously. As failures in a cascading event are 
clearly not independent, dependent probabilities must be used corre-
lating the outage probabilities of multiple elements after a given trig-
gering event happened. 

In this context, this paper studies the effects of including simulta-
neous system failures with dependencies in probabilistic network 
planning models to design resilient power networks. We refer to resilient 
networks as we focus on hedging against the impacts of exogenous high 
impact and low probability events (i.e., natural hazards) on the power 
system. To do so, we use a two-stage stochastic transmission expansion 
planning model, where, in the first stage, network investments and pre- 
contingency dispatch decisions are made and, in a second stage, re- 
dispatch decisions and demand curtailments occur as recourse de-
cisions. The two-stage scenario tree is built using a Monte Carlo simu-
lation process that, first, simulates the occurrence of an earthquake 
event and, then, simulates the following potential network outages. We 
compare the results of this model against two other models: a deter-
ministic N − k planning model and a stochastic planning model that 
ignores dependencies. Finally, we use the model to quantify the value of 
a portfolio of hybrid AC and DC power lines, attempting to further un-
derstand the benefits of utilizing flexible HVDC technologies to mitigate 
risks against correlated simultaneous outages. To our knowledge, this is 
the first study of this kind. 

We structure the rest of the paper as follows. In Section 2 we provide 
a qualitative description of the methodology used to simulate earth-
quakes and a general description of the deterministic and probabilistic 
models used for optimal network design. In Section 3 our case study, 
which consists of a 14-bus network located in Northern Chile, and our 
main results. Finally, in Section 4 we conclude. 

2. Methodology 

2.1. Overview 

We propose a stochastic mathematical program to design power 
transmission networks with probabilistic outage scenarios. This pro-
gram decides on new network infrastructure (i.e. lines and transformers) 
and its corresponding system operation, by minimizing the sum of the 
investment cost, operational or generation cost (pre-fault cost and post- 
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fault expected cost), and the expected cost of the energy not supplied. 
We use this mathematical program to evaluate three different design 
criteria, varying the different outage scenarios and probabilities that are 
considered.1 

In the first case, the program determines network investments that 
satisfy the N-1 security criterion, meaning that scenarios consider the 
failure of only one component, their probabilities are even and for each 
scenario all energy demand must be satisfied. The cost of corrective 
actions in the form of reserve utilization are also neglected. We refer to 
this variant of the mathematical program as the N-1 robust model. In 
the second case, scenarios consider single and multiple failures, but their 
probabilities are calculated assuming that components fail indepen-
dently according to their failure rates, we refer to this variant as the 
Stochastic model with independent probabilities. In the third case, 
scenarios also consider single and multiple failures, but their probabil-
ities capture correlations. We refer to this variant as the Stochastic 
model with failures correlation. Such correlation can be caused by a 
common mode, for example, a natural hazard (e.g. storms, earthquakes) 
that may couple outage probabilities within a given location. Notice that 
reliability data are fundamentally ignored by the first model, while 
unavailability of each network component is the same in the second and 
third models. The difference between these two models is the appro-
priate recognition of dependencies in reliability data in the last case. 

The stochastic optimization mathematical program used in this study 
is based on [19], with modifications to incorporate both line and sub-
station failures and HVDC power lines. In order to make a fair com-
parison of the solutions of the three above-mentioned variants or 
models, we carry out an out-of-sample analysis by comparing the per-
formance of each network design solution against a new sample of 
outages, statistically independent from the ones previously used. Thus, 
we calculate new expected costs for each of the three solutions to 
properly compare their performance. Importantly, for generating 
random outage scenarios, we first generate random natural hazards, 
which have the ability to increase and couple the probabilities of outage 
scenarios. We use earthquakes as the selected natural hazard since the 
way how they impact on outage probabilities has been already well 
established [25,53]. 

2.2. Mathematical optimization program 

We modified the stochastic optimization formulation in [19] to 
incorporate additional features. This corresponds to a two-stage sto-
chastic problem, where in a first-stage (before uncertainty is revealed) 
the investment in transmission infrastructure and pre-fault power gen-
eration levels and reserves are decided. In the second stage, for each 
scenario, recourse actions can be applied after transmission infrastruc-
ture and generating units fail, by modifying the generation dispatches 
(using the scheduled generation reserve committed in the first stage). 
Also, if demand cannot be met at a given scenario, then this induces a 
lost-load cost. The program minimizes the first-stage cost (investment 
cost and pre-fault operational costs) plus the expected value of the 
second stage decisions (post-fault operational and lost-load cost) over 
the set of outage scenarios given to the problem. 

The main modifications to the model presented in [19] are:  

• Investment decisions in HVDC network infrastructure. Apart from 
conventional AC lines and transformers, the model can now invest in 
HVDC lines too at a higher cost than traditional AC lines. This is 
modeled by relaxing the Kirchhoff’s voltage law (KVL) that couples 
busbar angles as indicated in [38].  

• Substation failures, modeled by derating the capacity of all network 
infrastructure directly connected to the targeted substation, 
including lines to generation and demand. Unlike power lines, whose 
failures are modeled in an binary on/off fashion, substations may 
present various damage states with different derated capacities. 

These two features where added in order to analyze (i) the value of 
flexible network equipment in the provision of security of supply and (ii) 
the effect of substation failures, which are normally ignored in system 
reliability analysis as pointed out in [25,53]. The resulting model is 
presented in Appendix A. This optimization model captures the tradeoffs 
between incurring in additional investment costs (building new trans-
missions lines), and the consequent cost of system operation pre- and 
post-fault, considering lost-load costs and the potential support from 
flexible HVDC equipment in reducing pre- and post-fault operational 
costs via relaxing KVL. 

We remark that this mathematical program strongly depends on the 
scenarios supplied. Providing representative scenarios considering 
geographically correlated failures, allows to optimize investment de-
cisions in a more adequate fashion. On the contrary, providing scenarios 
neglecting correlations and assuming independent failure probabilities, 
may produce inappropriate investment propositions. In this context, we 
study the differences caused by outage correlations in network expan-
sions, along with assessing the performance of these solutions in an out- 
of-sample analysis. We also compare these stochastic solutions against 
those determined by the N-1 robust model, which ignores failure 
probabilities and corresponds to the current state of affairs in network 
planning. 

2.3. Scenario generation 

We use a two-layer uncertainty process to generate correlated sce-
narios and we use earthquakes as the common mode that correlates 
failures. In the first layer, realization of a given earthquake occurs. In the 
second layer, a given network outage occurs as a consequence of the 
given earthquake. This two-layer uncertainty process is modeled as 
follows:  

1. A random earthquake is generated via uniform random selection 
from a predefined list. The list contains data from historical earth-
quakes with their location, depth and magnitude. 

2. Following the occurrence of the earthquake generated in the previ-
ous step, we calculate the peak ground acceleration (PGA) at the 
location of every network component, following the ground motion 
attenuation formula proposed by [39]. We use the PGA at every 

Fig. 1. Seismic fragility curve of transmission tower.  

1 For the sake of clarity, in this paper the term mathematical program refers to 
the main stochastic optimization problem, from which each variant or model is 
derived. 
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equipment’s location to determine the failure probability of the 
component by using the appropriate fragility curve. As an example, 
fragility curves for a carrying transmission tower are presented in 
Fig. 1, as obtained by [40]. Fragility curves for other network com-
ponents can be obtained from [41]. 

3. With the (conditional) failure probability of every network compo-
nent, we generate an outage scenario by using a Monte Carlo simu-
lation. An outage scenario consists of the combination of the states of 
all network components after the earthquake occurs. 

While transmission lines present two possible states (on/off), sub-
stations and generators may present various derated states after an 
earthquake occurs as explained next. 

• Transmission lines: First, we consider two damage states for trans-
mission towers: no damage state and outaged state. In this vein, a 
power line is available only if no towers have been damaged. The 
fragility curve used to determine the failure probability of a tower is 
that in [40]. 

• Substations: Unlike transmission towers, we consider that sub-
stations can partially operate, so we define different damage states 
that affect substation’s capacity. Hence, a substation can be avail-
able, partially available (with 3 damage levels: 95%, 60% or 30% of 
the original capacity) and fully damaged, following the set of 
fragility curves described in [41]. As explained earlier, this is 
modeled by derating the capacity of all network infrastructure 
directly connected to the targeted substation, including lines to 
generation and demand.  

• Generators: Like substations, we consider that a generator can be 
fully available, partially available and fully damaged after an 
earthquake occurs. The failure probabilities, derated capacities and 
the fragility curves are the same ones used for substations. 

After a comprehensive set of outage scenarios has been generated by 
using the above-mentioned Monte Carlo based method, we eliminate 
repeated scenarios and calculate their probabilities based on the 
observed frequency of them. The reduced set of scenarios and their 
probabilities are used to solve the Stochastic model with failures 
correlation, obtaining its optimal investments and dispatch decisions. 
To run the Stochastic model with independent probabilities, instead, 

we first calculate the marginal probability of failure of each network 
component as the number of simulations where the targeted component 
presents a specific damage state, divided by the total number of simu-
lations. By using these marginal probabilities, we run a new Monte Carlo 
simulation to obtain a new set of outage scenarios assuming indepen-
dence. As before, we eliminate repeated scenarios and calculate their 
probabilities based on the observed frequency of each scenario, and we 
use these data to solve the stochastic model. Finally, to run the N-1 
robust model, there is no need for using Monte Carlo simulations as all 
outage scenarios considered in this model are included with equal 
probability.2 

2.4. Out of sample assessment 

To compare the performance of the solutions obtained by the three 
models, we undertake an out-of-sample assessment, in which we 
generate a very large number of new samples of damage states, which 
are used to evaluate the three solutions. To obtain a fair comparison, 
while the first-stage decisions of every solution (i.e. network in-
vestments and pre-fault network operations) are fixed, post-fault de-
cisions are accommodated to minimize post-fault costs. That is, we solve 
the second-stage of our optimization problem to decide the recourse 
actions that minimize the total cost for each individual scenario. With 
these results, we compute the following metrics: annualized network 
investment costs, average generation costs and average lost-load costs of 
demand not supplied. We also compute various quantiles and empirical 
distributions of these costs. 

A scheme of the methodology and the inputs/outputs of each model 
can be found on Fig. 2. 

3. Case study and results 

Instance We use the IEEE 14-busbar network presented in [42], 
considering 8 new candidate transmission lines as potential investments. 

Fig. 2. Methodology to generate scenarios and compare the resulting decisions from the different models.  

2 Note that, in the robust model, the exact value of scenario probabilities does 
not matter as long as these are weighting factors higher than 0. This is so since 
the model presents extra constraints to prevent demand curtailments and costs 
of corrective actions are modified, equalizing them to zero. 
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Fig. 3 shows the original IEEE 14-busbar network, with the 8 new 
candidate transmission investment alternatives in yellow. Detailed data 
about demand, generation and transmission characteristics (including 
line capacities, reactances and costs) are presented in Appendix B. We 
also consider HVDC investment alternatives available for the same 8 
new candidate transmission lines, but with an investment cost that is 
50% higher than the AC alternative. 

As described earlier, we assume that this network is located in an 
area affected by earthquakes. In particular, we assume that the IEEE 14- 
busbar networks is located in northern Chile, an area that is prone to this 
type of natural hazard [43]. Fig. 3 shows the location of the network in 
northern Chile and the coordinates of each bus are described in 
Appendix B. 

Northern Chile is also an area where some of the largest copper mines 
in the world are located and where most of the demand for electricity 
comes from industrial processes. For this industry, the cost of inter-
rupting the supply of power is much higher than, say, the cost of cur-
tailing demand for residential customers. For this reason, we assume a 
high value of lost load, equal to 110,000 $/MWh, which reflects a 
preference for a highly-reliable power grid.3 

We assume that thermal generators have a ramping limit of 20% of 
their nominal capacity. For all network components, we assume a repair 
time of 168 hours (one week), which represents the unavailability of 
damaged network infrastructure following a major earthquake. 

In terms of the transmission infrastructure, we assume that high- 
voltage transmission towers are located along each transmission line 
every 300 m. Fragility curves of generation, transmission lines and 
substations are taken from [40] and [41]. For illustration purposes, we 
consider that the set of possible scenarios of earthquakes that could 
occur in the future is based on the list of earthquakes with significant 
magnitude (5.5Mw or more) that occurred in northern Chile between 
years 2000 and 2019. The position and magnitude of the considered 
earthquakes can be found in the U.S. Geological Survey catalog available 
online [48]. 

Scenario Generation and Analysis 
We simulate 250,000 realizations by randomly generating earth-

quakes and its subsequent network outages. After generating the above- 
mentioned dependent scenarios, marginal failure probabilities can be 
calculated for each system component. Detail results of these values can 
be observed in Table B.5 in the appendix. 

With the marginal probabilities of component failures we simulate 
another set of 250,000 realizations by randomly generating independent 
network outages. In this vein, Table 1 compares the probability of 
observing exactly k failures in the set of dependent scenarios and in the 
set of independent scenarios. The table shows that the probability that 
all transmission lines remain available (k = 0) is smaller for the inde-
pendent case as earthquakes generate a positive failure correlation be-
tween components (this is so because components tend to fail 
simultaneously). The failure of two or more components accounts for 
only 6% of the scenarios in the independent case. However, they 
represent 10% of the scenarios in the dependent case. When failures of 
more lines are considered, more significant differences arise. Notice that 
for k ≥ 3, failures with k transmission lines are consistently under-
estimated in the independent model. These events are three times more 
probable in the dependent model for k = 3, seven times more likely for 
k = 4 and more than 10 times more probable for k > 4. These differences 
should not be neglected since these correspond to the scenarios with the 
highest losses and, therefore, they are likely to impact investment 
decisions. 

An analysis of the correlation between components shows the same 
behavior at a more detailed level. In fact, it can be seen from Fig. 4 that 
correlations are significant. 

These substantial values of the correlations, together with small 
failure probabilities, cause that simultaneous failures of components 
occur considerably more often than expected under the independent 
assumption. In fact, the probability of simultaneous failure of a pair of 
transmission lines can attain a value up to 15 times the probability of the 

Fig. 3. IEEE 14-busbar network with 8 candidate transmission lines (in yellow) and its location in the north of Chile. Red dots on the map refers to the potential 
earthquakes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Probability of multiple failures for the dependent simulated scenarios and its 
corresponding independent scenarios.  

Num. of failed lines Dependent scenarios Independent scenarios 

- 71.6776% 66.2774% 
1 18.6936% 27.6609% 
2 7.4592% 5.3621% 
3 1.7964% 0.6427% 
4 0.3260% 0.0535% 
5 0.0440% 0.0033% 
>5 0.0032% 0.0002%  

3 Note that while this value might seem excessively high, many power sys-
tems around the world are planned and operated using strict reliability stan-
dards. For instance, in the US, systems are planned using a resource-adequacy 
standard that aims for no more than 1 h of interrupted service in 10 years. 
According to a recent report for the National Association of Regulatory Utility 
Commissioners (NARUC), the implied value of lost load required to justify this 
resource-adequacy target is nearly 300,000 $/MWh [44], which is almost three 
times the value we used in this study. Finding what is the right reliability target, 
in line with the actual economic value that society places on avoiding demand 
curtailments, is an ongoing subject of research [45–47], but beyond the scope of 
this paper. 
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same simultaneous event under the independent assumption. See Fig. 5 
for a comparison between the pair-wise simultaneous failure probabil-
ities of transmission lines and busbars. 

Resulting topologies We solved the three optimization models to 
evaluate the impact of the different criteria, namely the N-1 robust 
model (RN-1), the stochastic model with independent probabilities (EI) 
and the Stochastic model with failures correlation (ED). We also 
consider the latter model with the option of HVDC lines (ED-HVDC). 
The resulting infrastructure (including the new transmission lines) are 
displayed in Fig. 6. 

The resulting networks differ considerably for the different models. 
From the 8 candidate transmission lines, the resulting network from RN- 
1 presents 7 new lines, EI presents 6 new lines, and ED decides to build 4 
new lines only. Also, RN-1 is the only model selecting lines 3 − 6 and 3 
− 8, which have the two highest investment costs among all candidate 
transmission lines. In line with previous research [19], these results 
demonstrate that deterministic investment decisions are significantly 
more costly than those determined by the stochastic counterparts as 
shown in Table 2. Indeed, RN-1 must be able to supply all demands in 
case of an N-1 outage occurs, irrespective of how cost-effective is such 

criteria. In this case, this necessarily drives higher investment costs. 
On the contrary, both stochastic models (ED and EI) do consider 

scenarios with demand curtailments when some components fail, alle-
viating the need for network investments. Among the stochastic solu-
tions, EI underestimates the scenarios with multiple failures, so optimal 
decisions of the model mainly hedge against single failures. On the other 
hand, ED appropriately captures correlations. Interestingly, capturing 
correlations, in this case, drives less transmission investments. The 
associated risk levels of these investment propositions will be presented 
and discussed in the next section. 

A completely different set of decisions is obtained when HVDC lines 
are considered as candidates. Hence, the optimal solution of ED-HVDC 
build 7 new transmission lines, where 5 of them adopt the HVDC tech-
nology. Compared with ED, these lines increment the investment costs 
from $2.8M to $7.3M (as shown in Table 2). Nevertheless, this is proved 
worth by the reduction in other cost components as explained in the next 
section. Importantly, as HVDC lines can bypass the KVL, they provide a 
more flexible alternative to operate the system while dealing with pre- 
and post-fault network congestions. 

Out-of-sample assessment analysis We evaluate the reliability of the 

Fig. 5. Relative difference between the probability of simultaneous failure of two or more components under the dependent and independent assumption. In figure 
(b), we consider that busbars are in a failure state when the available capacity is less than 60%. 

Fig. 4. Correlation between failures in the generated scenarios.  
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resulting network for each model under an out-of-sample evaluation of 
250,000 simulations. We recall that given the initial pre-fault configu-
ration (new transmission lines and power generation levels) of the 
network, we decide the optimal re-dispatch actions under all outage 
scenarios, obtaining an empirical distribution of the post-fault costs. In 
Table 2 we present the mean value and the [5% − 95%] quantiles of the 
investment, generation and unsupplied energy costs for each solution. 
Results show that ED model produces the lowest expected total cost, 
compared with the other models that do not consider HVDC technology 
as an option. In fact, the resulting network from EI has a higher gener-
ation and unsupplied energy costs than ED, with a 3.6% of increase in 
the total cost. This is so since EI underestimates the occurrence of 
multiple failures. This is worsened by the RN-1 model, where multiple 
failures are completely neglected. Although the expected generation 
cost is 3% lower than ED, the expected cost of the energy not supplied is 
12% higher, resulting in an increased total expected cost. This 

demonstrates that risks associated with deterministic decisions in terms 
of unserved energy can be significant, despite their higher investment 
costs. 

Observing the quantiles of the different cost components, we note 
that generation costs do not vary significantly across scenarios (less than 
1% in the worst case). On the contrary, the costs of energy not supplied 
can be considerably different among the outage scenarios. To better 
understand this, we show in Fig. 7 the empirical cumulative distribution 
of the unserved demand costs for each solution. It can be seen that, 
under the presence of an earthquake, in approximately 40% of the cases 
the total demand can be supplied for all models. However, the figure also 
shows that the unsupplied energy costs can be as high as $1,000M in the 
worst cases. In the figure we can also observe that RN-1 performs 
consistently worse than the other resulting networks. We also observe 
that ED produces a small but systematically significant reduction in the 
unsupplied energy costs compared with EI. All these comparisons have 
been validated by statistical tests (paired sampled t-test) over the 
simulations. 

Finally, the solution with HVDC lines considerably improves the 
economic and reliability performance in operational timescales. In fact, 
both generation costs and unsupplied energy costs are reduced against 
all other solutions. This can be explained by the more flexible operation 
of the HVDC lines, which can better manage pre and post-fault 
congestion scenarios, maximizing the amount of demand supplied and 
taking advantage of the cheapest generation available. 

4. Conclusions 

Natural hazards pose major threats to the secure operation of power 

Fig. 6. Topology constructed for each criteria.  

Table 2 
Costs of each solution under an out-of-sample evaluation (mean value and [5% - 
95%] quantiles).   

ED-HVDC ED EI RN-1 

Investment 7.3M 2.8M 3.7M 5.6M 
Generation 118.3M 138.8M 144.4M 134.7M  

[118.0M - 
118.4M ] 

[138.6M - 
139.0M] 

[144.1M - 
144.6M] 

[134.4M - 
134.9M] 

Lost-Load 135.2M 138.9M 142.7M 155.5M  
[0 - 618.2M ] [0 - 628.3M] [0 - 694.8M] [0 - 701.3M] 

Total Cost 260.8M 280.5M 290.8M 295.8M  
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grids. Earthquakes, hurricanes, and extreme weather events increase the 
likelihood of spatially-correlated failures of grid components and often 
result in major power outages [4–7]. Recent studies in the US conclude 
that the economic impact of grid outages due to natural disasters can be 
as high as $75 billion in a single year [10]. Consequently, new planning 
methods for power grids that reduce the risks of major outages due to 
natural hazards could yield large economic savings. 

Existing planning standards and methods to assess the reliability of 
power grids present various limitations when systems are exposed to 
natural hazards. For instance, power grids that are planned and operated 
using deterministic standards such as the N − k criterion can effectively 
withstand simultaneous outages of any subset of k components of the 
system, with minimum or no curtailment of demand. However, in sys-
tems exposed to natural hazards, not all correlated outages of k com-
ponents will occur with the same probability. For this reason, it is 
possible that networks that are planned using an N − k criterion will be 
able to stand correlated outages that are unlikely to occur (e.g., simul-
taneous outages of geographically distant components), but will be ill- 
prepared to handle correlated outages in a geographical region due to 
a natural hazard. Increasing the security level k used in the N − k cri-
terion could reduce the downside risk of a major power outage due to 
correlated component failures, but at the expense of implementing 
network redundancies that will not provide enough benefits to the sys-
tem (e.g., avoided demand curtailments) to justify their cost. 

Probabilistic approaches are an improvement upon deterministic 
methods. Unlike the N − k criterion, in a probabilistic model it is 
necessary to consider the likelihood of all possible component failures 
and the social cost of curtailing demand, which yields an optimal 
strategy that balances the benefits and costs of different types of network 
reinforcements. Nevertheless, most of the existing probabilistic ap-
proaches assume that the probabilities of individual component failures 
are statistically independent. This is a convenient assumption in practice 
because it helps to keep computational models tractable. The downside 
is that, under this assumption, there is no guarantee that a network that 
was planned using a sophisticated probabilistic model will fare much 
better than a network planned based on a deterministic criterion when 
exposed to a natural hazard. 

Our experiment shows that the assumption of statistical indepen-
dence of component failures can result in planning models that under-
estimate the likelihood of simultaneous outages when the grid is 

exposed to natural hazards. In our case study, we find that the proba-
bility that at least two lines in the network fail simultaneously due to a 
simulated earthquake can be up to 15 times higher than the theoretical 
probability of a simultaneous failure assuming independence. This dif-
ference is proportional to the correlation of a simultaneous failure of 
network components and inversely proportional to the root of the 
marginal failure probabilities. Consequently, planners aiming to achieve 
high levels of resilience in power grids that are exposed to natural 
hazards cannot ignore the likelihood of spatially-correlated failures 
when evaluating the benefits and costs of different network designs. 

We demonstrate that an incorrect assessment of the probability of 
spatially-correlated outages—by assuming statistical independence of 
component failures—results in investments in network assets and pre- 
fault generation levels that are different to the ones that we find that 
are optimal when we explicitly consider dependent failures. As ex-
pected, the network that is planned using a probabilistic model that 
assumes independent component failures performs rather poorly when 
tested against an earthquake that causes spatially-correlated outages of 
network elements, resulting in high levels of expected energy not 
supplied. 

Overall, we find that ignoring correlations of component failures is 
similar to underestimating the actual risks posed by high-impact and 
low-probability events that can cause major power outages. This is 
because the probability that multiple components fail at the same time is 
artificially low in the planning model where we assume independent 
component failures. Consequently, the scenarios that ultimately drive 
investment decisions are those that have a high enough chance of 
occurrence, which are similar to those that are considered when using 
the deterministic N-1 criterion. However, we find that the latter is even 
more conservative than a probabilistic model that assumes independent 
component failures. Recall that the N − 1 criterion requires that the 
system must be able to supply all demand in all scenarios of individual 
failures, which leads to unnecessary investments in network assets. We 
confirm this intuitive behavior in our experiments, where we observe 
that investment costs increase significantly when we plan the network 
using the N-1 criterion, but without effectively reducing the amount of 
expected energy not supplied in settings where the system is exposed to 
natural hazards. 

We also use our case study to assess the value of flexible transmission 
assets. In our study, we consider the option of substituting AC for HVDC 

Fig. 7. Empirical cumulative distribution function of the Lost-Load costs.  
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transmission lines. HVDC lines are much more expensive than conven-
tional AC lines, yet, they have the added benefit that power flows in 
HVDC lines are controllable and not constrained by Kirchhoff’s Voltage 
Law. We find that when the probabilistic model that considers spatially- 
correlated failures has the alternative to invest in flexible HVDC trans-
mission assets, it replaces some investments in AC lines for HVDC links. 
It also adds additional transmission lines, changing the topology with 
respect to the optimal investment strategy when only AC lines are 
considered. This change in the investment strategy results in higher 
investment costs than in the model that only considers AC investment 
alternatives. However, this increase in investment costs is more than 
compensated by the decrease in expected cost of operating the system 
and curtailing demand. Therefore, flexible network assets, albeit costly, 
can both reduce operating costs under regular operating conditions and 
impart flexibility to meet demand in contexts where the system is 
exposed to natural hazards that cause spatially-correlated failures of 
network components. 

Finally, we want to highlight that the insights from our analysis can 
be useful for systems exposed to other types of natural hazards that can 
also cause spatially-correlated failures. For example, a recent heat wave 
in the state of California resulted in the de-rating of 1870 MW of ca-
pacity of gas plants due to ambient temperature, which contributed to 
the demand curtailments experienced in the state during the summer of 
2020 [49]. Around the same period, 55 high-voltage transmission 
towers were knocked down by conductor galloping [50] as a result of 
abnormally-low temperatures, heavy snow, and strong winds during a 
storm in Southern Argentina [51]. Since forecasts indicate that these 
types of extreme-weather events will increase both in frequency and 
intensity due to climate change [52], we believe that planning models 
that consider the impact of spatially-correlated component failures will 

become valuable tools for designing and operating resilient networks in 
areas that are exposed to the physical risks posed by natural hazards. 
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Appendix A. Stochastic model 

This section describe the stochastic optimization model utilized for the computational experiments. It is a modified version of the model presented 
in [19]. 

Sets L is the set of transmission lines, N is the set of busbars, and G is the set containing generators. T is a set of time periods and S is the set of 
scenarios or operating states, which includes the special scenario s = 0 where no component failure occurs. 

Variables Binary variable μl ∈ {0,1} indicates if an additional transmission line l is constructed or not. Variable θnts is the voltage angle at busbar n 
during time period t at scenario s. flts is the power flow in line l during time period t at scenario s. llnts is the lost load at busbar n during time period t at 
scenario s. Finally, pgts is the output level of generator g during time period t at scenario s and vg is the binary on/off commitment status of generator g 
at time t. 

The main constraints of the model include: 
Kirchoff Current Law 

pnts +
∑

l∈δ+(n)

flts + llnts =
∑

l∈δ− (n)

flts + dnt (A.1)  

At each busbar n, time period t and scenario s, there must be a balance between supply and demand. The total generation at n (we denote pnts the sum of 
pgts for all g in busbar n), plus the incoming power flow must be equal to the demand dnt at the busbar plus the outgoing power flow. llnts > 0 if there is 
not enough generation and/or transmission capacity to meet demand. 

Kirchoff Voltage Law (linearized) 

− M(1 − μl⋅Alts) +
θo(l)ts − θd(l)ts

xl
≤ flts ≤

θo(l)ts − θd(l)ts

xl
+ M(1 − μl⋅Alts) (A.2)  

Alts⋅μl⋅
(

− f l

)

≤ flts ≤ f l⋅Alts⋅μl (A.3)  

For each line l, time period t and scenario s, if the transmission line is constructed (μl = 1) and it is available (Alts= 1), then the power flow flts over the 
line must be equal to the difference of voltage angles between its connecting busbars (θo(l)ts and θd(l)ts) divided by the reactance of the line xl. 
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Additionally, the power flow over the line cannot exceed its limits [ − f l,f l]. In case the line is not constructed (μl = 0) or is not available (Alts = 0), the 
power flow flts is zero. In this expression, M is a sufficiently large number, from the classical Big-M modeling technique. 

Ramp-up and down constraints 

(1 − ε)⋅pgt0 ≤ pgts ≤ (1+ ε)⋅pgt0 (A.4)  

For each generator g, time period t and scenario s, the generation output level pgts cannot be higher than (1 + ε) times the default generation level 
chosen for the scenario s = 0 where no failure occurs. 

Bound of variables 

0 ≤ llnts ≤ dn (A.5)  

pg⋅vgt ≤ pgts ≤ pg⋅vgt (A.6)  

For each scenario s and time period t, the amount of lost load llnts cannot be higher than the demand at each busbar n, and the production level pgts 

cannot be lower/higher than its minimum/maximum output pg / pg at each generator g if such generator is dispatched (vgt = 1). 
Objective Function 

min
∑

l∈L
πl⋅μl

+
∑

s∈S

∑

g∈G

∑

t∈T
πg⋅

(
pgts⋅αt + pgt0⋅βt

)
⋅ρs

+
∑

s∈S

∑

n∈N

∑

t∈T
πn⋅llnts⋅αst⋅ρs

(A.7) 

The objective function has three components. The first component is the sum of the annualized construction cost πl for each transmission line. The 
second component includes the generation costs πg of each generator in each time period, over the different scenarios s ∈ S. For each scenario, it is 
assumed that the output level in period t is at a default level pgt0 during the time βt representing the intact system. An output level pgts is generated 
during the extension of the failure, which is represented by the time αt. The third term includes for each scenario the cost of the lost load πn of each 
demand busbar. We also assume a failure time given by αst. To compute the expected cost over all scenarios, the last two terms are multiplied by the 
probability ρs of the scenario s. 

Bus failures Substation failures result in derated capacity. This is modeled by limiting the capacity of all lines connected to the substation, which is 
obtained by replacing parameter Alts by the corresponding fraction of the total capacity in the scenario s. This affects the bounds of the variable flts. 

Investment in HVDC lines HVDC lines can be included using an extra variable μ̂l ∈ {0,1} for each transmission line. The first term of the objective 
function must include the additional cost of these lines, by adding the term 

∑
l∈L π̂ l μ̂l, and the constraint μ̂l ≤ μl for each line l ∈ L. Since an HVDC 

transmission line is not constrained by the linearized KVL constraints, we add an additional term to the Big-M constraint resulting in (in other words, 
we “pay” an extra cost to neglect KVL): 

− M⋅μ̂l − M(1 − μl⋅Alts) +
θo(l)ts − θd(l)ts

xl
≤ flts

flts ≤
θo(l)ts − θd(l)ts

xl
+ M(1 − μl⋅Alts) + M⋅μ̂l 

Additional constraints for the N-1 robust model For the N − 1 security criterion, the model only considers scenarios where at most one line fails, and 
the resulting network must withstand each of these outages. Hence, to fulfill this criterion, we add for each busbar with demand the following 
constraint 

llns = 0 ∀s ∈ S, ∀n ∈ N  

. 

Appendix B. Details of the test case instance  

Table B1 
Geographical coordinates of the power network busbar are shown in Table B1.  

Busbar Latitude Longitude Busbar Latitude Longitude 

1 –23.650883 –70.397563 8 –23.423331 –68.311097 
2 –24.452434 –70.112106 9 –23.244066 –68.614204 
3 –24.555276 –68.704701 10 –23.216861 –69.104226 
4 –23.650136 –68.787245 11 –23.083895 –69.390199 
5 –23.870859 –69.854716 12 –22.930360 –70.029442 
6 –23.441645 –69.666275 13 –22.732063 –69.588221 
7 –23.460900 –68.593079 14 –22.958990 –69.139022  

J. Barrera et al.                                                                                                                                                                                                                                 



Electric Power Systems Research 197 (2021) 107280

11

References 

[1] K. Yamashita, S.-K. Joo, J. Li, P. Zhang, C.-C. Liu, Analysis, control, and economic 
impact assessment of major blackout events, Eur. Trans. Electr. Power 18 (8) 
(2008) 854–871. 

[2] G.B. Anderson, M.L. Bell, Lights out: impact of the August 2003 power outage on 
mortality in New York, NY, Epidemiology 23 (2) (2012) 189. 

[3] G. Strbac, D. Kirschen, R. Moreno, Reliability standards for the operation and 
planning of future electricity networks, Foundations and Trends® in Electric 
Energy Systems 1 (3) (2016) 143–219, https://doi.org/10.1561/3100000001. 

[4] J. McLinn, Major Power Outages in the US, and around the World. Technical 
Report, IEEE Reliability Society 2009 Annual Technology Report, 2009. 

[5] S. Mukherjee, R. Nateghi, M. Hastak, A multi-hazard approach to assess severe 
weather-induced major power outage risks in the US, Reliability Engineering & 
System Safety 175 (2018) 283–305. 

[6] M. Dumas, B. Kc, C.I. Cunliff, Extreme Weather and Climate Vulnerabilities of the 
Electric Grid: A Summary of Environmental Sensitivity Quantification Methods. 
Technical Report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 
2019. 

[7] A. Kwasinski, F. Andrade, M.J. Castro-Sitiriche, E. O’Neill-Carrillo, Hurricane 
Maria effects on Puerto Rico electric power infrastructure, IEEE Power Energy 
Technol. Syst. J. 6 (1) (2019) 85–94. 

[8] J.C. Araneda, H. Rudnick, S. Mocarquer, P. Miquel, Lessons from the 2010 Chilean 
earthquake and its impact on electricity supply. 2010 international conference on 
power system technology, IEEE, 2010, pp. 1–7. 

[9] J. Nakano, Japan’s energy supply and security since the March 11 earthquake. 
center for strategic & international studies, 2011. https://bit.ly/37aFGon, accessed 
2020-11-26. 

[10] EOP, Economic Benefits of Increasing Electric Grid Resilience to Weather Outages. 
Technical Report, Executive Office of the President, The White House, Washington 
DC., 2013. 

[11] D. Kirschen, D. Jayaweera, Comparison of risk-based and deterministic security 
assessments, IET Generation, Transmission & Distribution 1 (4) (2007) 527–533, 
https://doi.org/10.1049/iet-gtd:20060368. 

[12] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, P. Mancarella, Power system 
resilience to extreme weather: fragility modeling, probabilistic impact assessment, 
and adaptation measures, IEEE Trans. Power Syst. 32 (5) (2016) 3747–3757, 
https://doi.org/10.1109/TPWRS.2016.2641463. 

[13] K. Kariuki, R.N. Allan, Evaluation of reliability worth and value of lost load, IEE 
Proceedings - Generation, Transmission and Distribution 143 (2) (1996) 171–180, 
https://doi.org/10.1049/ip-gtd:19960191. 

Table B3 
Network line capacities, reactances and investment costs of each line, and its resulting marginal failure probabilities from the scenario generation.  

Lines Capacity Reactance Investment Marginal Failure  
[MW] [p.u.] Cost [$/year] Probability 

1 - 2 65 0.1069 - 0.03% 
1 - 5 35 0.0689 - 0.09% 
2 - 3 59 0.1629 - 0.49% 
2 - 5 29 0.0795 - 0.01% 
3 - 4 41 0.1152 - 1.01% 
4 - 7 40 0.0329 - 1.08% 
4 - 9 10 0.0553 - 1.56% 
5 - 6 29 0.0587 - 0.10% 
6 - 11 26 0.0556 - 0.35% 
6 - 12 10 0.0774 - 3.12% 
6 - 13 26 0.0904 - 1.32% 
7 - 8 80 0.0331 - 3.10% 
7 - 9 59 0.0276 - 1.94% 
9 - 10 17 0.0572 - 1.02% 
9 - 14 17 0.0711 - 2.53% 
10 - 11 19 0.0374 - 0.13% 
12 - 13 15 0.0574 - 2.55% 
13 - 14 16 0.0599 - 0.24% 
1 - 12 85 0.1009 752,475 3.41% 
2 - 4 37 0.1841 597,415 2.45% 
3 - 6 75 0.1798 1,183,211 2.60% 
3 - 8 80 0.1506 1,056,819 1.44% 
4 - 5 56 0.127 623,870 1.52% 
5 - 10 55 0.1204 580,696 0.15% 
8 - 14 80 0.113 793,262 6.09% 
11 - 12 50 0.0771 338,182 2.22%  

Table B2 
Demand, generating capacities and generation costs at each busbar, marginal failure probabilities for each percentage of the original capacity from the scenario 
generation. Also, the resulting mean (μ) and standard deviation (σ) values of the original capacity are shown in Table B2.  

Busbar Max. Demand Max. Gen. Gen. Cost Marginal Failure Probabilities  

[MW] [MW] [$/MWh] 100% 95% 60% 30% 0% μ  σ  

1 0 332.4 50 92.6% 4.8% 2.3% 0.3% 0.0% 98.6% 7.3% 
2 21.7 140 80 99.9% 0.1% 0.0% 0.0% 0.0% 100.0% 0.4% 
3 94.2 100 80 97.2% 1.7% 1.0% 0.1% 0.0% 99.4% 4.6% 
4 47.8 0 - 87.6% 5.2% 4.1% 3.1% 0.1% 95.9% 14.5% 
5 7.6 0 - 98.1% 1.6% 0.3% 0.0% 0.0% 99.8% 2.2% 
6 11.2 100 50 90.6% 4.6% 3.0% 1.8% 0.0% 97.3% 11.5% 
7 0 0 - 84.4% 4.5% 3.2% 5.5% 2.4% 92.2% 22.4% 
8 0 100 50 83.2% 3.3% 2.4% 9.4% 1.7% 90.6% 24.2% 
9 29.5 0 - 80.8% 5.2% 4.9% 8.0% 1.0% 91.1% 22.3% 
10 9 0 - 91.6% 4.7% 1.9% 1.7% 0.1% 97.8% 10.7% 
11 3.5 0 - 91.7% 5.4% 2.6% 0.3% 0.0% 98.5% 7.4% 
12 6.1 0 - 75.9% 6.5% 5.6% 10.9% 1.1% 88.7% 24.7% 
13 13.5 0 - 90.6% 4.1% 2.9% 2.3% 0.1% 96.9% 12.6% 
14 14.9 0 - 91.6% 4.2% 1.9% 2.2% 0.1% 97.3% 12.2%  

J. Barrera et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0001
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0001
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0001
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0002
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0002
https://doi.org/10.1561/3100000001
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0004
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0004
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0005
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0005
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0005
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0006
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0006
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0006
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0006
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0007
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0007
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0007
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0008
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0008
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0008
https://bit.ly/37aFGon
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0010
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0010
http://refhub.elsevier.com/S0378-7796(21)00261-3/sbref0010
https://doi.org/10.1049/iet-gtd:20060368
https://doi.org/10.1109/TPWRS.2016.2641463
https://doi.org/10.1049/ip-gtd:19960191


Electric Power Systems Research 197 (2021) 107280

12

[14] J. Choi, T. Tran, A. El-Keib, R. Thomas, H. Oh, R. Billinton, A method for 
transmission system expansion planning considering probabilistic reliability 
criteria, IEEE Trans. Power Syst. 20 (3) (2005) 1606–1615, https://doi.org/ 
10.1109/TPWRS.2005.852142. 

[15] J. He, L. Cheng, D. Kirschen, Y. Sun, Optimising the balance between security and 
economy on a probabilistic basis, IET Generation, Transmission & Distribution 4 
(12) (2010) 1275–1287, https://doi.org/10.1049/iet-gtd.2010.0039. 

[16] W. Li, Probabilistic transmission system planning, John Wiley & Sons, 2011, 
https://doi.org/10.1002/9780470932117. 

[17] J. McCalley, S. Asgarpoor, L. Bertling, R. Billinion, H. Chao, J. Chen, J. Endrenyi, 
R. Fletcher, A. Ford, C. Grigg, et al., Probabilistic security assessment for power 
system operations. 2004 IEEE Power Engineering Society General Meeting, IEEE, 
2004, pp. 212–220, https://doi.org/10.1109/PES.2004.1372788. 

[18] R. Moreno, D. Pudjianto, G. Strbac, Integrated reliability and cost–benefit-based 
standards for transmission network operation, Proceedings of the Institution of 
Mechanical Engineers, Part O: Journal of Risk and Reliability 226 (1) (2012) 
75–87, https://doi.org/10.1177/1748006X11424103. 

[19] R. Moreno, D. Pudjianto, G. Strbac, Transmission network investment with 
probabilistic security and corrective control, IEEE Trans. Power Syst. 28 (4) (2013) 
3935–3944, https://doi.org/10.1109/TPWRS.2013.2257885. 

[20] F. Capitanescu, J.M. Ramos, P. Panciatici, D. Kirschen, A.M. Marcolini, 
L. Platbrood, L. Wehenkel, State-of-the-art, challenges, and future trends in 
security constrained optimal power flow, Electr. Power Syst. Res. 81 (8) (2011) 
1731–1741, https://doi.org/10.1016/j.epsr.2011.04.003. 

[21] F. Bouffard, F. Galiana, J.M. Arroyo, Umbrella contingencies in security- 
constrained optimal power flow. 15th Power Systems Computation Conference 
2005, 2005, pp. 807–813. 

[22] Y. Li, J.D. McCalley, Decomposed SCOPF for improving efficiency, IEEE Trans. 
Power Syst. 24 (1) (2008) 494–495, https://doi.org/10.1109/ 
TPWRS.2008.2002166. 

[23] J.A. Bloom, Solving an electricity generating capacity expansion planning problem 
by generalized Benders’ decomposition, Oper Res 31 (1) (1983) 84–100. 

[24] J.A. Bloom, M. Caramanis, L. Charny, Long-range generation planning using 
generalized Benders’ decomposition: implementation and experience, Oper Res 32 
(2) (1984) 290–313. 

[25] T. Lagos, R. Moreno, A. Navarro, M. Panteli, R. Sacaan, F. Ordonez, H. Rudnick, 
P. Mancarella, Identifying optimal portfolios of resilient network investments 
against natural hazards, with applications to earthquakes, IEEE Trans. Power Syst. 
35 (2) (2020) 1411–1421, https://doi.org/10.1109/TPWRS.2019.2945316. 

[26] D.S. Kirschen, D.P. Nedic, Consideration of hidden failures in security analysis. 
14th Power Systems Computation Conference 2002, 2002, pp. 886–892. 

[27] J.L. Calvo, S.H. Tindemans, G. Strbac, Incorporating failures of system protection 
schemes into power system operation, Sustainable Energy Grids Networks 8 (2016) 
98–110, https://doi.org/10.1016/j.segan.2016.10.002. 

[28] J.L. Calvo, S.H. Tindemans, G. Strbac, Risk-based method to secure power systems 
against cyber-physical faults with cascading impacts: a system protection scheme 
application, J. Mod Power Syst. Clean Energy 6 (5) (2018) 930–943, https://doi. 
org/10.1007/s40565-018-0447-8. 

[29] A.J. Gonzalez, B.E. Helvik, J.K. Hellan, P. Kuusela, Analysis of dependencies 
between failures in the UNINETT IP backbone network. 2010 IEEE 16th Pacific 
Rim International Symposium on Dependable Computing, Institute of Electrical 
and Electronics Engineers, Inc., 2010, pp. 149–156, https://doi.org/10.1109/ 
PRDC.2010.12. 

[30] P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers. 
Proceedings of the ACM SIGCOMM 2011 Conference volume 41, Association for 
Computing Machinery, 2011, pp. 350–361, https://doi.org/10.1145/ 
2043164.2018477. 

[31] D. Turner, K. Levchenko, A.C. Snoeren, S. Savage, California fault lines: 
understanding the causes and impact of network failures. Proceedings of the ACM 
SIGCOMM 2010 Conference volume 40, Association for Computing Machinery, 
2010, pp. 315–326, https://doi.org/10.1145/1851275.1851220. 

[32] J. Barrera, H. Cancela, E. Moreno, Topological optimization of reliable networks 
under dependent failures, Operations Research Letters 32 (2) (2014) 132–136, 
https://doi.org/10.1016/j.orl.2014.12.014. 

[33] O. Matus, J. Barrera, E. Moreno, G. Rubino, On the Marshall–Olkin copula model 
for network reliability under dependent failures, IEEE Trans. Reliab. 68 (2) (2019) 
451–461, https://doi.org/10.1109/TR.2018.2865707. 

[34] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, G. Zussman, Power grid 
vulnerability to geographically correlated failures - analysis and control 
implications. IEEE INFOCOM 2014-IEEE Conference on Computer 
Communications, IEEE, 2014, pp. 2634–2642, https://doi.org/10.1109/ 
INFOCOM.2014.6848211. 

[35] I. Dobson, J. Chen, J. Thorp, B.A. Carreras, D.E. Newman, Examining criticality of 
blackouts in power system models with cascading events. Proceedings of the 35th 
Annual Hawaii International Conference on System Sciences, IEEE, 2002, p. 10pp, 
https://doi.org/10.1109/HICSS.2002.993975. 

[36] M. Papic, K. Bell, Y. Chen, I. Dobson, L. Fonte, E. Haq, P. Hines, D. Kirschen, X. Luo, 
S.S. Miller, N. Samaan, M. Vaiman, M. Varghese, P. Zhang, Survey of tools for risk 
assessment of cascading outages. 2011 IEEE Power and Energy Society General 
Meeting, IEEE, 2011, pp. 1–9, https://doi.org/10.1109/PES.2011.6039371. 

[37] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer Science 
& Business Media, 2011, https://doi.org/10.1007/978-1-4614-0237-4. 

[38] Y. Chen, R. Moreno, G. Strbac, D. Alvarado, Coordination strategies for securing 
AC/DC flexible transmission networks with renewables, IEEE Trans. Power Syst. 33 
(6) (2018) 6309–6320, https://doi.org/10.1109/TPWRS.2018.2851214. 

[39] C.B. Crouse, Ground-motion attenuation equations for earthquakes on the cascadia 
subduction zone, Earthquake Spectra 7 (2) (1991) 201–236, https://doi.org/ 
10.1193/1.1585626. 

[40] L. Xie, J. Tang, H. Tang, Q. Xie, S. Xue, Seismic fragility assessment of transmission 
towers via performance-based analysis. Proceedings of the 15th World Conference 
on Earthquake Engineering, Lisbon, Portugal volume 20, 2012, pp. 16203–16212. 

[41] Federal Emergency Management Agency, Multi-hazard loss estimation 
methodology: Earthquake model, Hazus MH MR5: Technical manual, Department 
of Homeland Security, FEMA, Washington, DC, 2010. https://www.hsdl.org/?vie 
w&did=12760. 

[42] R.D. Christie, Power systems test case archive: 14 bus power flow test case, 1993. 
http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm, accessed 2019-07-24. 

[43] D. Comte, M. Pardo, Reappraisal of great historical earthquakes in the northern 
Chile and Southern Peru seismic gaps, Natural hazards 4 (1) (1991) 23–44. 

[44] Astrape Consulting, The Economic Ramifications of Resource Adequacy White 
Paper. Eastern Interconnection States’ Planning Council and National Association 
of Regulatory Utilities Commissioners, 2013. https://pubs.naruc.org/pub.cfm? 
id=536DBE4A-2354-D714-5153-70FEAB9E1A87, accessed 2020-12-03. 

[45] M.L. Telson, The economics of alternative levels of reliability for electric power 
generation systems, The Bell Journal of Economics (1975) 679–694. 

[46] P.H. Larsen. Severe weather, power outages, and a decision to improve electric 
utility reliability, Stanford University, 2016. Ph.D. thesis. 

[47] K.H. LaCommare, J.H. Eto, L.N. Dunn, M.D. Sohn, Improving the estimated cost of 
sustained power interruptions to electricity customers, Energy 153 (2018) 
1038–1047. 

[48] United States Geological Survey, Earthquake hazards program: Earthquake catalog, 
1993. https://earthquake.usgs.gov/earthquakes/search/, accessed 2018-06-20. 

[49] California ISO, Report on system and market conditions, issues and performance: 
August and September 2020. Technical Report, California Independent System 
Operator Corporation, Department of Market Monitoring, CA (United States), 
2020. 

[50] J.-L. Lilien, State of the Art of Conductor Galloping, CIGRE, 2007. 
[51] La Nación - Argentina, Chubut: Un fuerte temporal derribó 55 torres de alta tensión 
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