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Abstract In this work, we consider a risk-averse ultimate pit problem where
the grade of the mineral is uncertain. We derive conditions under which we
can generate a set of nested pits by varying the risk level instead of using
revenue factors. We propose two properties that we believe are desirable for
the problem: risk nestedness, which means the pits generated for different
risk aversion levels should be contained in one another, and additive consis-
tency, which states that preferences in terms of order of extraction should
not change if independent sectors of the mine are added as precedences. We
show that only an entropic risk measure satisfies these properties and propose
a two-stage stochastic programming formulation of the problem, including an
efficient approximation scheme to solve it. We illustrate our approach in a small
self-constructed example, and apply our approximation scheme to a real-world
section of the Andina mine, in Chile.
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1 Introduction

A fundamental problem in open-pit mine planning is the determination of the
ultimate pit (UP), which consists of finding the contour of the mine that max-
imizes the difference between profits obtained from minerals minus extraction
costs. The ultimate pit is very relevant in mine planning because it allows
for a rough estimation of the value of a mine, and permits the determina-
tion of the region of interest on a mineral deposit. The problem is formulated
in a very simplistic way, representing the mine as a set of uniform blocks
(block model) with a predefined economic value and taking into account only
structural requirements, such as the maximum slope angle on the pit walls. A
first formulation of the UP problem can be traced back to 1965: the seminal
paper [18] was one of the first works to propose an algorithm to solve this
problem, and their methodology has been widely used in the mining industry.
Since then, many authors have used different implementations and techniques
to solve this problem in a variety of settings [3, 5, 9, 13,24].

The UP problem is relevant in practice mainly for two reasons. First, it
provides a rough estimate of the total ore and metal tonnage that can be po-
tentially extracted, defining the region of interest of the deposit that deserves
further analysis. Second, the possibility of solving UP problems efficiently al-
lows one to generate so-called nested pits [18]: by solving the problem for dif-
ferent prices—using “revenue factors”—of the mineral, it is possible to obtain
a sequence of pits such that higher factors generate larger pits that contain
the smaller ones. The main purpose of the nested pits technique is to derive
phases (or pushbacks) used to guide the sequence of extraction of the mine for
later production scheduling considering more operational constraints. In fact,
nested pits have been the basis of most mine planning software during the last
30 years.

A crucial element of the UP problem is the economic value assigned to each
block, which in general considers—at least—the grade, the price and the cost
of extracting and processing a block to recover the minerals. The vast major-
ity of works concerning the UP problem assume that these parameters of the
problem are known. However, one of the most relevant sources of uncertainty
comes from the estimation of the grades of minerals—commonly referred to
as ore grade—in each block. Geostatisticians have developed several method-
ologies to study this problem, considering the strong spatial correlation that
characterizes ore grade distributions in a deposit. The most common technique
is to extract samples from the deposit via drill holes, to infer the distribution
of the ore grades based on those samples and to generate scenarios using tech-
niques such as kriging [8]. However, most of this rich information about the
deposit and its ore grades is not used on further steps of the mine planning
process, and only one single grade value per block—in general, the average
grade of each block—is utilized for solving the UP problem.

There are few works that incorporate the distribution of ore grades (or
at least, a finite set of scenarios for the ore grades) into a mine planning
problem. In [7,17], the authors show how the net present value of a mine can
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be improved by using techniques based in stochastic programming. In [20],
expected profits are considered in the objective function, and the authors
conclude that larger profits can be obtained by incorporating uncertainty into
the UP formulation with respect to the deterministic case and that the relative
gains of the stochastic approach increase with the treatment costs. In [11],
the authors move one step further and study the risk-averse UP problem,
replacing the expected value by risk measures such as the conditional value-
at-risk (CVaR) [22], which has been widely used in applications in finance and
energy.

The idea behind the nested pits technique can be interpreted as a way of in-
corporating risk aversion into the mine planning problem. The smaller pits are
those that are profitable, even if the ore grades (or metal prices) are multiplied
by a small revenue factor. However, it is known that this simplistic approach
does not provide the expected protection under bad scenarios [11]. We propose
a detailed study of the risk-averse UP problem, considering ore grades as an
uncertain parameter of each block. We generate a set of nested pits by varying
the risk level of the problem instead of considering revenue factors. First, we
propose some properties—risk nestedness and additive consistency—that we
believe a risk measure should have in the context of the UP problem and show
that the only risk measure that satisfies those properties is the entropic risk
measure. In particular, the CVaR does not satisfy any of these properties and
is probably not the best choice to capture risk aversion in the mine planning
context. Second, we derive conditions under which the entropic risk measure,
which is a convex risk measure primarily used with utility functions over cap-
ital investments [12], generates nested pits by varying the risk-aversion level
of the decision maker.

We apply our methodology to a small case study of a self-constructed in-
stance to illustrate the gains of our approach. We also verify our proposed
methodology in a real-world mine, showing how ore grade uncertainty can
drastically change the solutions obtained, while the common nested-pit ap-
proach is unaffected by the stochastic nature of the ore grade.

The structure of this paper is as follows. Section 2 provides an overall
view of the UP problem, and we present a two-stage stochastic formulation
and summarize the concept of nested pits. In Section 3, we define risk in the
UP problem and propose desirable properties that risk measures should have.
In Section 4, we show the results of our methodology using a small instance
to visualize the differences between ours and the nested-pit methodology and
using a real mine to show the potential of its use in real-life instances. Section 5
concludes the work and points out avenues for future research.
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2 Ultimate pit problem and nested pits

2.1 Ultimate pit problem

2.1.1 Block model and its economic values

A block model is a representation of the deposit, constructed by a three-
dimensional array of units—usually of equal size—called blocks [23]. Each
block has a set of parameters including—at least—a tonnage, representing the
amount of material in each block and an ore grade gb, which determines the
proportion of mineral in the block. We denote by B the set of blocks of the
mine. From the position of each block, we can also estimate a set of precedences
for each block, which is the set of blocks that must be extracted before a given
block is removed from the mine, to avoid geotechnical difficulties. In practice,
these precedences are computed to maintain a maximum slope angle on the
walls of the pit [15]. We denote by P ⊆ B ×B the set of all precedences; that
is, if (b, b′) ∈ P , then to order to extract block b, we must extract block b′.
Figure 1 presents an example of this representation.

Fig. 1: Example of a block model of a mine [23].

The economic value of each block depends on its destination, which in turn
depends, among other factors, on the metal grades of the block. In the simplest
case, we assume that there is only one grade and two possible destinations for
each block after extracting it: either to process it to recover the mineral or to
drop it in a waste dump. Depending on this destination, we say that a block
is either ore or waste.

Let ceb be the cost of extracting block b and cpb be the additional cost of
processing block b after being extracted. In practice, these costs are usually a
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fixed value per ton of material, but we can consider more complex formulas, for
example, by including contaminants or considering the hardness of the block.
As a convention, ce := {ceb}b∈B and cp := {cpb}b∈B will be defined as the vector
of all extracting costs and processing costs for every block b ∈ B, respectively.

When processing a block, a fraction of its contained metal is recovered,
which generates an income. We denote this income by rb · gb, where gb > 0 is
the ore grade of block b, and rb > 0 includes other factors needed to compute
the profit. In the simplest case, rb is the product of the tonnage of block b,
the metal recovery rate of the process, and the price per unit of the recovered
metal. Since we are interested in the study of ore grade uncertainty, we assume
that rb has a deterministic value for every block b ∈ B.

With these parameters, the economic value vb of an extracted block b ∈ B
is given by the following formula:

vb =

{
rb · gb − cpb − ceb if b is extracted and processed (ore),

−ceb if b is extracted but not processed (waste).
(2.1)

For the ultimate pit problem, the destination of each block can be decided
a priori: we only process a block if its income pays off the processing costs
(rb · gb− cpb > 0). In the case that rb and cpb have a fixed value for all blocks in
B, the threshold grade gcut = cp/r is known as the cut-off grade, and blocks
are classified as either ore or waste depending if their grade gb is greater than
gcut.

2.1.2 UP with deterministic ore grades

The UP problem consists of selecting the set of blocks to extract and process
that which maximizes the total value of the mine. Using our previous notation,
we can formulate the UP problem as the following mixed-integer optimization
problem:

UP(g, r) = min
xe,xp

∑
b∈B

(cpb − rbgb)x
p
b + cebx

e
b

s.t. xeb ≤ xeb′ ∀(b, b′) ∈ P,
xpb ≤ x

e
b ∀b ∈ B,

xeb, x
p
b ∈ {0, 1} ∀b ∈ B,

(2.2)

where the decision of extracting and processing each block b ∈ B is represented
by the binary variables xeb and xpb , respectively, and g := {gb}b∈B represents
the vector of ore grades for every block b ∈ B. We remark that we wrote
the problem as a minimization of cost, instead of maximization of profit (the
negative of the objective function in (2.2)), to be consistent with most of the
risk literature. The first set of constraints represents the extraction precedences
for every block, and the second set of constraints conditions the processing of
a block to its extraction.
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As mentioned before, variables xp can be eliminated from the problem
because the destination of a block can be decided a priori, so we can consider
the extraction decision xeb only and replace its objective coefficient by −vb
(see (2.1)). Nonetheless, since this simplification is not always valid for the
stochastic version of the UP problem, we will use formulation (2.2) as a starting
point in the next section.

2.1.3 UP with uncertainty on ore grades

The first step in developing a risk-averse model is to define a way in which
to handle the ore grade uncertainty of the mine. For each b ∈ B, let g̃b be
the random variable that represents the ore grade of block b. Note that the
decision of whether a block is ore or waste depends on the realization of g̃b,
so we cannot decide a priori its economic value as in the deterministic case.
Hence, it is natural to introduce these random ore grades in the UP problem
as a two-stage stochastic optimization problem. In the first stage, a decision
must be made before the uncertainty is revealed, and a second-stage decision
is made once the uncertainty is known, as a recourse action. In the context of
the UP problem, we define the extraction decision as a first-stage variable and
the processing decision as a second-stage variable.

Therefore, the UP problem under uncertainty can be formulated as follows:

UPU = min
xe

∑
b∈B

cebx
e
b + ρα (Q(xe, g̃, r))

s.t. xeb ≤ xeb′ ∀(b, b′) ∈ P,
xeb ∈ {0, 1} ∀b ∈ B,

(2.3)

where

Q(xe, g̃, r) = min
xp

∑
b∈B

(cpb − rbg̃b)x
p
b

s.t. xpb ≤ x
e
b ∀b ∈ B,

xpb ∈ {0, 1} ∀b ∈ B,

(2.4)

and g̃ := {g̃b}b∈B represents the vector of random variables realizations of
ore grades for every block b ∈ B. Function ρα : L1 → R will be defined
as a deviation or risk measure, which deals with the uncertainty of the ore
grade in the second stage. The parameter α ∈ R, whose range depends on the
risk measure ρα under consideration, represents the risk aversion level of the
decision maker. We note that if g̃b has a deterministic value, then we recover
formulation (2.2).

If ρα(·) is equal to the expected value E[·], then we fall into the risk-neutral
case, which was extensively studied in [20]. One of their main results is that
the objective value of UPU is greater than or equal to the objective value of
the deterministic problem when using the expected grade E[g̃b] of each block.
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This result, which can be seen as an application of Jensen’s inequality due to
the convexity of function Q(xe, g̃, r), shows that even under risk neutrality,
the stochastic UP problem can provide a different—and more profitable—pit
(in expected value) than its deterministic counterpart.

2.2 Nested pits in open pit mine planning

As mentioned before, nested pits are a well-known concept that serve as the
basis for several software programs used by the industry. Given a sequence of
revenue factors β1 < β2 < . . . < βM , with βi ≥ 0, we solve the deterministic
problem UP(g, βi · r) for each i = 1 . . .M . The solution of these problems sat-
isfies the nestedness property, where the resulting pit is obtained with revenue
factor βi is completely contained in the pit obtained by using revenue factor
βi+1 (see [4,14,18] for a formal proof of this property). Figure 2 shows the pits
generated by solving a small instance of problem (2.2) with β1 < β2 < β3 < β4.

Fig. 2: Example of nested pits.

Note that for β = 0, the resulting problem UP(g, β · r) only considers the
extraction and processing costs, so the optimal solution is to not extract any
block. For β = 1, we recover the classical deterministic UP problem. Note that
two consecutive revenue factors βi < βi+1 do not necessarily result in different
pits, implying that the number of different nested pits can be smaller than M .

Nested pits are not explicitly defined as a way to deal with uncertainty.
They are used as input in a scheduling problem that defines the extraction
and processing times for each block, incorporating other constraints such as
maximum tonnage capacities per period, discounted cash flow over different
periods, and other operational constraints. The idea behind nested pits ap-
proaches is that smaller pits (obtained using smaller revenue factors) are more
profitable because they have a positive value, even if the ore grades (or min-
eral prices) are multiplied by these small factors. Finally, the interplay between
revenue and discount factors can be interpreted as a way of risk aversion from
the decision maker’s perspective. Parts of the mine that remain financially
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attractive even after being penalized by a revenue factor should be extracted
first to avoid further devaluation by the discount factor.

In the last decade, several papers have questioned the use of nested pits for
mine planing and production scheduling, replacing it by direct block scheduling
of the problem (see [19] for a more detailed description of the state-of-the-
art developments in this area). Nevertheless, the idea of nested pits is still
broadly used due to its simplicity and practicality of having a sequence of pits
as guidance for the successive steps of the mine planning process.

A key contribution of our work is to propose an adequate risk measure ρα
for mining problems and to be able to solve problems (2.3)-(2.4) efficiently.
Given that we incorporate ore uncertainty, we want to derive conditions under
which we can replicate the well-known idea of nested pits but consider different
risk levels by varying the parameter α to obtain these pits instead of using
revenue factors.

3 Risk measurement

3.1 Defining risk under ore grade uncertainty

For the remainder of this paper, we focus on ore grade uncertainty. Neverthe-
less, most of the results presented can be easily extended to other sources of
uncertainty. To select the appropriate risk measure for the UP problem, we
need to define which we believe are the desirable characteristics of the pits
generated by a given risk measure ρα when we vary the parameter α.

As previously discussed, our intention is to study risk measures that provide
nested pits with different risk aversion levels; that is, more conservative pits
must be contained in riskier pits. The main justification for this property
comes from the practical interpretation of the nested pits. Nested pits are
widely used as a basis for the design of phases. In deterministic or risk-neutral
settings, more profitable pits must be extracted earlier due to the discount
factor of future cash flows of the mine. In a risk-averse context, a set of nested
pits with an ordered level of risks can be used in the same way, providing a
guideline on how to sequentially exploit the mine, from safer to riskier pits. If
considering different risk levels provides different unrelated or unnested pits,
then the intuition on how to exploit the deposit is unclear.

Our proposed definition of the risk nestedness property is as follows:

Definition 1 Assume that the level of risk aversion of the decision maker rises
when the value of α ∈ R increases and that the ore grades are independently
distributed. A risk measure ρα is risk nested for the UP problem if for α1 > α2

the set of extracted blocks in the optimal solution of problem (2.3) obtained
by using ρα1

is contained in the set of extracted blocks obtained using ρα2
.

Please note that ore grade independence between blocks is not a realis-
tic assumption in a mining context. In contrast, geostatistical models for ore
grades consider dependence between blocks that are physically close. However,
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we assume this independence to provide formal mathematical proofs of results
that as we will see in the computational experiments, are also observed for
realistic dependent distributions of the ore grades.

A second desirable property is related to the consistency of extracting
decisions. Decisions over a set of blocks should not depend on the uncertainty of
independent elements within the mine. More precisely, assuming independence
of the ore grade distributions, if a pit U ′ is riskier than other pit U ′′ and we
add to both pits a completely unrelated block b /∈ U ′

⋃
U ′′, then it is desirable

that pit U ′
⋃
{b} is still riskier than pit U ′′

⋃
{b}. This property is known as the

additive consistency property of a risk measure and can be defined as follows:

Definition 2 Let X,Y and Z be random variables, where Z is independent
of both X and Y , and ρα(·) be a risk measure where α is the risk level of the
decision maker. If ρα(X) < ρα(Y ) and ρ is additive consistent, then

ρα(X + Z) < ρα(Y + Z).

We suggest these two properties as desired for a given risk measure. In the
next subsection, we discuss about different risk measures in the literature, and
we study whether they satisfy these desired properties.

3.2 Study of some risk measures for the stochastic UP problem

In the last 20 years, risk measures have been extensively studied, and their
theoretical properties are well established. Motivated by applications in energy,
finance, reliability, among others, several risk measures have been used in real-
world problems, each of which has specific properties. One of the most popular
in the optimization literature is the conditional value-at-risk (CVaR). Despite
its popularity in finance and energy problems, we present somewhat surprising
results that show that the CVaR does not satisfy risk nestedness or additive
consistency.

In [6], the authors proved that the only risk measure that is additive con-
sistent is the entropic risk measure. Motivated by that result, we study this
risk measure and discuss its suitability for the risk-averse UP problem.

3.2.1 The CVaR risk measure

The CVaR is a commonly used risk measure due to its tractability. Following
[22], the CVaR can be defined as

CVaRα(X) = min
η∈R

{
η +

1

1− α
E
[
(−X − η)+

]}
, (3.5)

where X is a random variable, (·)+ is the positive part function, and α ∈ [0, 1[
is the risk level. A value of α = 0 corresponds to the risk-neutral case (the
expected value), and as α approaches one, the risk measure protects against
the worst-case realization of X.



10 Gianpiero Canessa et al.

CVaR has been previously used as a risk measure for the UP problem in [1]
and [16]. However, the next proposition shows that it may not be the ideal
risk measure for stochastic UP problems under our requirements.

Proposition 1 The CVaR risk measure is not risk-nested for the UP problem.

Proof. We will prove that the CVaR is not risk-nested with a counterexample:
let B bet the set of blocks containing only three blocks bX , bY and bZ , and
assume that to extract block bX or bY , we must extract block bZ (i.e. bZ is a
precedence of bX and bY ).

We remark that if a random variable W is normally distributed with mean
µ and variance σ2 (W ∼ N(µ, σ2)), then

CVaRα(W ) = µ+
σ2

(1− α)
√

2π
e−z

2
1−α/2, (3.6)

where z1−α is the (1 − α)-quantile of the standard normal distribution. Let
the ore grade of the three blocks be independent and normally distributed,
resulting in a final profit distribution given by the random variables X ∼
N(−2, 18), Y ∼ N(1, 0) and Z ∼ N(−4, 10).

α
Combination of blocks Profit 0.05 0.1 0.5

∅ 0 0 0 0
{bX , bY , bZ} X + Y + Z -1.96 0.46 17.34
{bX , bZ} X + Z -2.96 -0.54 16.34
{bY , bZ} Y + Z -1.91 -1.05 4.98

Table 1: Comparison of CVaR values for different pits.

Table 1 shows the results of computing the CVaR using formula (3.6) for
different values of α and for different combinations of valid pits. It can be seen
that with α = 0.1, the optimal solution is to extract bY and bZ , but reducing
the risk aversion level to α = 0.05, it is optimal to extract blocks bX and bZ ,
which are not contained in the previous solution. This example shows that the
CVaR is not risk nested.

3.2.2 The entropic risk measure

Let X be a random variable. The entropic risk measure of X at level α is
defined as

ρEntα (X) :=

{
1
α logE[eαX ] if α 6= 0,

E[X] if α = 0.

If α > 0, then the decision maker is risk-averse, α < 0 means risk-seeker, and
α = 0 corresponds to the risk-neutral (expected value) case. We will focus on
nonnegative values of α.
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The entropic risk measure (ρEnt) satisfies additive consistency [6], and it
is a convex function, making it suitable for optimization problems. However,
it is not a coherent risk measure [2, 6]. We claim that ρEnt is a viable risk
measure for the stochastic UP problem since it also satisfies the risk nestedness
property:

Proposition 2 The entropic risk measure is risk-nested for the UP problem.

To prove this result, we use two technical lemmas from the entropic risk
measure:

Lemma 1 Let α1, α2 ∈ R, with α1 > α2. For any random variable X, we
have that ρEntα1

(X) ≥ ρEntα2
(X).

Lemma 2 The entropic risk measure is translation invariant; that is, if X is
a random variable and a ≥ 0, then

ρEntα (X + a) = ρEntα (X) + a.

Lemma 3 Let X,Y be two independent random variables, and 0 < α < ∞.
We have

ρEntα (X + Y ) = ρEntα (X) + ρEntα (Y ).

The proofs of Lemma 1 and Lemma 2 are presented in Appendix A, and
for the proof of Lemma 3, we refer the reader to [6].

Proof of Proposition 2. Let g̃b be the random variable of the ore grade for each
block b ∈ B, assume they are independently distributed, and let α1, α2 ∈ R
be two risk levels where 0 < α2 < α1 < ∞. Let U1 and U2 be the result-
ing pits obtained by solving (2.3) using the entropic risk measure ρEntα1

and
ρEntα2

, respectively. We assume that U1 and U2 are minimal solutions for these
problems.

By Lemma 2, we know that the objective function of problem (2.3) can
also be written as ρEntα (

∑
b∈B c

e
b + xeb +Q(xe, g̃, r)). To simplify the notation,

we denote by ρEntα (U) the value of this objective function when evaluated on
the indicator vector of U (that is, xeb = 1 if and only if b ∈ U).

By contradiction, assume that U1 * U2. Since extracting an empty pit is
a feasible solution for the UP problem and ρEntα (∅) = 0 for any α > 0, we
know that ρEntα1

(U1) < 0. Furthermore, since U1 ∪ U2 is also a valid pit (but
not optimal) for the UP problem with risk measure ρEntα1

, Lemma 3 and the
minimality of U1 implies that ρEntα1

(U1\U2) < 0.
By Lemma 1, since α2 < α1, then ρEntα2

(U1\U2) ≤ ρEntα1
(U1\U2) < 0. How-

ever, since U2 ∪ (U1\U2) is also a feasible solution for the UP problem, by
Lemma 3, we have that

ρEntα2
(U2 ∪ (U1\U2)) = ρEntα2

(U2) + ρEntα2
(U1\U2) < ρEntα2

(U2),

which is a contradiction of the optimality of U2, completing the proof.
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These results show that the entropic risk measure is a good candidate to
be utilized for solving the stochastic UP problem. In the next section, we will
exemplify our approach using different configurations of uncertainty in the ore
grade of the blocks of a mine, and compare the pits obtained to the classical
nested pits approach.

4 Computational results

We present two sets of results. First, we consider a small-sized mine that was
designed to illustrate the properties and methodologies that we propose in this
paper. The second mine is a real-life instance with a large number of blocks
to test the applicability of our methodology in a more realistic environment.

We provide a comparison of the results using different risk measures and
discuss the practical implications and managerial insights of the pits obtained
with each method. We implemented all models in Python 3.7.2 using Gurobi
8.1 as a solver for the resulting optimization problems. All computations were
performed on an Intel(R) i7 CPU 7700HQ @ 2.80 GHz and 12 GB of memory
using Windows 10.

4.1 Small mine

4.1.1 Mine description and parameters of the problem

We will study a mine with 66 blocks in a two-dimensional configuration, whose
topology is described in Figure 3. The precedences are as follows: if a block is
to be extracted, then the blocks on the top, right and left of the block on top
must be extracted, emulating a 45-degree slope angle (see block b in Figure 3).
We assume that only a set B of blocks (indicated as blue blocks in the figure)
can be extracted.

Fig. 3: Topology of the small mine: blue blocks are part of set B, yellow arrows
represent the precedences of block b, and white blocks are not being considered
for extraction.
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In this simple example, to avoid approximations of the distribution and
simplify the computations, we assume that the ore grade g̃ follows a multivari-
ate normal distribution N(µ,Σ), where µ is the vector of mean values and Σ
is the variance-covariance matrix. In this case, it can be proven that problem
(2.3) for the entropic risk measure can be formulated as a mixed integer pro-
gram with a convex quadratic objective function (see Appendix A.3), which
can be solved by most modern optimization solvers.

The resulting equivalent formulation of the UP problem with ρEnt is given
by

min
xe,xp∈XEP

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbḡb)x
p
b +

1

2
α
∑
b∈B

∑
b′∈B

rbx
p
brb′x

p
b′Σbb′ , (4.7)

where XEP is the same feasible set of solutions for problem (2.3).
The grade distribution g̃ of the blocks is illustrated in Figure 4: all blue

blocks are waste, with constant grade equal to zero, and the yellow block has a
constant grade of 3. The grades of the red blocks follow a multivariate normal
distribution, with means (µ1, µ2, µ3, µ4) = (4, 4, 5, 6), from top to bottom, a
variance Σi,i = µ2

i and covariances Σi,j = 0.2 · µi · µj for all pairs (i, j). The
remaining parameters of the problem are ceb = 0.5, cpb = 0 and rb = 1 for all
b ∈ B.

4.1.2 Results for the stochastic UP using ρEnt

Fig. 4: Grade structure of a small mine: blue blocks are waste, yellow blocks
have no variance, and red blocks have positive covariance.

The different pits resulting from solving the UP problem with ρEnt for
(1) α = 0, (2) α = 0.02, (3) α = 0.04, (4) α = 0.1 and (5) α = 0.2 are
shown in Figure 5a. We recall that α = 0 represents the risk neutral case,
that is, maximizing the expected profit of the pit. It can be seen that in the
risk-neutral case the whole mine is extracted. If we increase the risk-aversion
level α, then the optimal UP becomes smaller and contained in the previous
UP. Under high levels of risk aversion (α = 0.2) the pit only includes the four
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(a) g̃ ∼ N(µ,Σ)

(b) g̃ ∼ N(µ, 2Σ) (c) g̃ ∼ N(µ, 10Σ)

Fig. 5: Optimal stochastic UP for ρEntα with different values of α (in different
colors) and covariance matrices.

top-leftmost red blocks because this pit has a positive profit and zero variance,
so there is no risk.

It is interesting to note the evolution of the pits when we multiply the
parameter Σ by some positive constant: as variability grows, the optimal pit
configuration changes for the same values of α. Subfigures 5b and 5c show the
evolution of the pits when we multiply the covariance matrix Σ by 2 and 10,
respectively. Note that if some numbers within the blocks are missing, it is
because the pit is the same as the solution obtained by using a higher value
of α, i.e., in Figure 5b the optimal solutions using α = 0.1 and α = 0.2 are
the same. In Figure 5c we see that for any value of α ≥ 0.02, all pits obtained
extract the yellow block from Figure 4 and avoid the red blocks.

4.1.3 Results for the classical nested pit approach

As a comparison, the same analysis can be performed using classical nested
pit methodology, namely, solving problem (2.2) for different revenue factors β.
Note that this methodology assumes a deterministic grade for each block, so
we use the mean values µ as the ore grade of the random red blocks. Figure 6
shows some nested pits obtained for different ranges of revenue factors β as
follows:

1. β ∈ [0.916, 1],
2. β ∈ [0.9, 0.916[,
3. β ∈ [0.875, 0.9[,
4. β ∈ [0.6, 0.875[,
5. No blocks are extracted : β < 0.6.
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Fig. 6: Classical nested pits for the small mine.

As expected, it can be seen that using revenue factor β = 1.0, we obtain
the same pit as in the risk-neutral when the red block is random. Interestingly,
the resulting nested pits for other values of β do not consider extracting the
less riskier pit on the upper left corner (those with the number 5 in Figure 5).
In contrast, for smaller revenue factors (β < 0.6), the optimal solution is to
not extract any blocks.

Note that this methodology does not consider the variance of the grades,
so we will obtain the same optimal pits even in scenarios of high uncertainty.
The classical nested pit approach is not designed for dealing with geological
uncertainty, and given its invariance with respect to higher variability levels,
it should not be used for this purpose. As we show in Figure 6, under grade
uncertainty, the risk-free profitable pit could not be detected by the nested pit
approach, a pit that ρEnt was able to identify.

We can clearly see how variability becomes an important factor with the
ρEnt approach and how it is controlled by the choice of α: conservative values
aim for smaller but less variable expected profits. We also remark that similar
to revenue factors for the classical nested pits, considering a very high level of
risk aversion results in not extracting any block (or only a set of blocks that
provides a positive revenue for any realization of its grade values). On the
other extreme, a zero risk level is equivalent to the risk-neutral case, resulting
in the classical ultimate pit problem. The entropic risk measure can be of prac-
tical use in the mine planning community especially due to its risk nestedness
property, providing a potential alternative way for defining phases when the
ore grade uncertainty is relevant for the problem. By inspecting the resulting
nested pits, decision makers with different levels of risk aversion can define the
mine contour that is more suitable to their risk tolerance. Since the risk-averse
approach takes into account uncertainty in the ore grades, pits obtained for
values of β close to zero, as shown in Figure 2 might be left unexplored.

4.2 Andina case

The Andina is a copper mine that belongs to Codelco, Chile’s state-owned
company that controls approximately 20% of global reserves of copper. It is
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located in Rio Blanco (approximately 80 km NE of Santiago) and is still active
after 82 years. We will work with a sector of the mine represented by 26,400
blocks from the Sur-Sur open pit. The ore grade distribution is approximated
by scenarios generated from a set of drilling holes via conditional simulations
using the turning bands algorithm [10].

Since this mine does not follow a multivariate normal distribution of ore
grades we cannot use the closed-form quadratic formulation (4.7). We at-
tempted to solve the problem directly using nonlinear optimization solvers
(MINOS) to check if we could handle the real mine with its 26,400 blocks.
The solver was not able to close an optimality gap of 99.9% after 5 hours
running, even after reblocking the mine into less than 100 blocks. In summary,
it is hopeless to try to attack the problem directly.

The presence of integer variables and the nonlinearity of function ρEnt

turns the risk-averse UP problem into an extremely challenging problem to
solve for larger mines. However, given the convexity of the exponential func-
tion, we can use a piecewise linear approximation of the objective function. To
accomplish this, we modify the objective function of (2.3) due to the transla-
tion invariance of ρEnt (please refer to Lemma 2) and the monotonicity of the
log function. All necessary proofs and final model that approximate the value
of problem (2.3) using ρEnt can be found in Appendix C.

4.2.1 Results

Given the computational cost of solving this problem with a large number
of scenarios, we use 20 ore grade scenarios to solve the problem. Using more
scenarios would lead to larger solving times, which requires specialized opti-
mization techniques to solve the resulting model, and goes beyond the scope
of this paper. Nevertheless, using this number of scenarios is not uncommon
in the stochastic mine planning literature [7, 17].

Our piecewise linear approximation was designed to be a uniform grid
between integers -20 and 20 with steps of 0.01 (4,000 steps in total) because
Gurobi treats values below 10−8 as 0 and exp(−20) ≈ 2.06 · 10−9. We also
computed a scaling factor and changed the NumericFocus parameter of Gurobi
to its maximum value. With those changes, we gained more processing power
in the numerical calculations and avoided numerical issues given the small
numbers that will be used by our model. We use the mean absolute deviation
(MAD) to check the performance of our approximation.

We denote by NP the resulting pits obtained by the nested pit methodology.
To correctly approximate the true value of each solution, we evaluate the total
profit of the resulting ultimate pit on a different out-of-sample set of 100
scenarios. This gives us a set of 100 values for each solution. We also compare
these values with the lower bound (LB) obtained by solving problem (2.2) by
fixing gb to each scenario. LB will have a different pit and a negative profit
per scenario, serving as a benchmark to the best possible result. Additionally,
we present the coefficient of variation (CV), which is the ratio between the
standard deviation and the average of the profits.
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Table 2 shows the results for NP while changing the value of β. If β ≥
0.7, then the solutions obtained have less than 100 blocks extracted, and for
β ≥ 0.9, no blocks are extracted, and we omit the results. A similar behavior
was observed in the small mine example in Section 4.1: conservative values of
β will avoid extraction altogether. However, as risk averseness grows, the CV
becomes larger (6.9% on average).

Model LB NP 0 NP 0.1 NP 0.2 NP 0.3 NP 0.4 NP 0.5 NP 0.6
Upit blocks - 15,775 12,738 7,303 4,218 1,963 816 310

Average -132.1 -121.4 -110.7 -86.5 -64.5 -43.2 -24.6 -12.4
CV - 5.9% 5.6% 5.3% 5.6% 6.3% 8.1% 11.0%

% vs LB 91.9% 83.8% 65.5% 48.8% 32.7% 18.6% 9.4%

Table 2: Table of descriptive statistics for NP of the out-of-sample results.

Table 3 shows the results for ρEnt. We observe a larger number of blocks
extracted in the pit of the neutral case, and using larger values of α, the
pits obtained have fewer blocks. As risk averness grows, the value of the CV
decreases (5.6% on average). The MAD for different values of α are of order
O(10−5) in the worst case, showing that our linear approximation is effective.
The values for α > 12.5 are not present in the table since the model incurs
numerical errors: the solution obtained was an empty pit.

Model LB ρEnt 0 ρEnt 7.5 ρEnt 10 ρEnt 12.5
Upit blocks - 21,770 19,545 14,810 11,273

MAD - - 2.62E-07 2.55E-07 2.92E-07
Average -132.1 -128.8 -125.6 -110.7 -98.6

CV - 5.9% 5.7% 5.3% 5.4%
% vs LB - 97.5% 95.1% 83.8% 74.6%

Table 3: Table of descriptive statistics for ρEnt of the out-of-sample results.

Figure 7 shows a boxplot of the negative cost (therefore profits) distribution
obtained by ρEnt, NP and LB. From a practical viewpoint we can see a higher
dispersion of profits among different values of β and that NP with β equal to
zero has a significant profit gap with respect to the lower bound (as noticed
in [20]). The situation is different for the entropic: there is less dispersion
among the different choices of the risk aversion level α, and a higher percentage
of the maximum profit can be captured by α values closer to zero.

Figure 8 shows a cross-sectional view of the pit, where we can observe the
differences in the optimal solutions of ρEnt and NP. We used α = 10 and
β = 0.03 to obtain pits with a similar number of blocks extracted (14,810
in ρEnt versus 14,983 in NP). We can see that both models aim for different
sections of the mine. In fact, NP extracts the block at the bottom of the central
zone, which has a positive profit but with a high uncertainty. In contrast, ρEnt
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Fig. 7: Boxplots of the total cost distribution per model for the Andina case.

avoids this zone, and prefers to go deeper in the eastern zone of the mine (left
side of the figure).

Fig. 8: Graphical comparison of the different resulting pits on a cross sectional
view of the mine.

The importance of these results is the effective application of an approxima-
tion method to prove ρEnt as a viable tool for risk aversion in real life instances
of mining optimization problems. In fact, these techniques are compatible with
the current methodologies to solve large-scale instances of open-pit mine plan-
ning problems [19]. The error obtained in the approximation to the real value
of the exponential function is of order O(10−5), which was within our accep-
tance tolerance, and Gurobi was able to solve the approximate formulation in
an average time of under 5 minutes for all the values of α.
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5 Conclusions

In this paper, we formulate and discuss how to solve a risk-averse version of
the UP problem under geological uncertainty. By considering the block model,
we incorporate ore-grade uncertainty and discuss the most appropriate risk-
measure properties for the problem, especially if we are interested in replicating
the use of nested pits for mine planning. We propose two properties we believe
a risk measure should satisfy in this context: risk nestedness and additive con-
sistency. Risk nestedness is a desirable property since modern mine scheduling
algorithms use the idea of nested pits as an input for generating a sequence of
block extractions over time. Additive consistency is also an intuitive property
in the sense that it preserves preferences in the presence of independent waste
blocks. An interesting consequence of our work is that one of the most popu-
lar risk measures, the conditional value-at-risk, fails to satisfy both properties
even in the case of blocks with independent distribution, calling into question
its use in mining.

In a small simulated mine, we contrast the results obtained using the
revenue factor to obtain nested pits and the proposed entropic risk measure
methodology. The former behaves as expected: we obtain different pits that
vary from mining everything up to avoid working on the mine altogether in the
most conservative cases. The proposed approach shows a different behavior:
we obtain smoother pit transitions as we vary the level of risk aversion, with
a focus on avoiding variance within the results. By generating higher variabil-
ity scenarios in the entropic risk approach, we obtain smaller pits than low
variability cases for the same value of α.

We apply our method to a real-life mine (Andina in Chile) with more
than 25,000 blocks, which is challenging to solve directly. The entropic risk
measure adds nonlinearity to the problem, which in most cases would make
the problem intractable. We apply a linear approximation to efficiently solve
the risk averse problem with the entropic risk measure, and our results show
that the approximation errors were within tolerable margins, validating the
linear approximation scheme. The pits generated by the entropic risk measure
are completely different from those using revenue factors, and different choices
of the risk parameter α allow us to obtain better profits when compared to
revenue factors.

Future work includes extensions to our numerical algorithm to be able
to cope with larger mines with millions of blocks and the study of dynamic
risk-averse models for mine scheduling problems.

A Mathematical proofs of lemmas

A.1 Proof of Lemma 1

Proof. We will show that the objective function of (2.3) increases monotonically with α > 0
(since α = 0 is the expected value case and a < 0 is the risk seeking case). Let us define
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f(X,α) as follows:

f(X,α) =
1

α
logE[eαX ],

where X is a random variable. Now, let us study the behavior of the first partial derivative
over α:

∂

∂α
f(X,α) =

1

α2

(
E[αXeαX ]

E[eαX ]
− logE[eαX ]

)
.

Let Y = eαX ; then,

∂

∂α
f(X,α) =

1

α2

(
E[Y log Y ]

E[Y ]
− logE[Y ]

)
=

1

α2

(
E[Y log Y ]− E[Y ] · logE[Y ]

E[Y ]

)
.

Since 1
α2 > 0 and E[Y ] = E[eαX ] > 0, we just need to study the sign of the numerator in

the partial derivative. Let h(Y ) = Y log Y ; then,

E[Y log Y ]− E[Y ] logE[Y ] = E[h(Y )]− h(E[Y ]).

Finally, since h(Y ) is a convex function (
∂2h(Y )

∂Y 2 = 1
Y
> 0), by using Jensen’s inequality, we

know that E[h(Y )]− h(E[Y ]) ≥ 0; therefore, f(X,α) increases monotonically.

A.2 Proof of Lemma 2

Proof. Let X be a random variable and a ≥ 0. We have that

ρEntα (X + a) =
1

α
logE[eα(X+a)]

=
1

α
log
(
eαaE[eαX ]

)
=

1

α
(αa+ logE[eαX ])

=
1

α
logE[eαX ] + a

= ρEntα (X) + a.

Therefore, it is translation-invariant, completing the proof.

A.3 Proof of equation 4.7

Lemma 4 If the ore grade distribution g̃ follows a Gaussian distribution with parameters
N(µ,Σ), then Problem 2.3 for ρEntα is equivalent to

min
xe,xp∈XEP

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbḡb)x
p
b +

1

2
α
∑
b∈B

∑
b′∈B

rbx
p
brb′x

p
b′Σbb′ ,

where XEP is the same feasible set of solutions for problem (2.3).



The risk-averse ultimate pit problem 21

Proof. Let g̃ ∼ N(µ,Σ); then, let Z be as follows:

Z :=

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg̃b)x
p
b

→ N(µ′, σ′2),

where
µ′ =

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbḡb)x
p
b ,

and

σ′2 = (r ◦ xp)TΣ(r ◦ xp)

=
∑
b∈B

∑
b′∈B

rbx
p
brb′x

p
b′Σbb′ ,

where operator ◦ is the Hadamard (elementwise) matrix product.
We can verify that E[eαZ ] is the moment generating function of a univariate normal

distribution, which in turn corresponds to the following:

exp

(
αµ′ +

1

2
α2σ′2

)
.

Therefore, we obtain the following equivalent formulation:

min
xe,xp∈XEP

ρEnt

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg̃b)x
p
b

 = min
xe,xp∈XEP

µ′ +
1

2
ασ′2,

where XEP is the same feasible set of solutions for problem (2.3), and since Σ is s.d.p., the
proof is completed.

B Other lemmas of interest

Lemma 5 The entropic risk measure is not a coherent risk measure.

Proof. Let X be a random variable and a ≥ 0. We have that:

ρEntα (aX) =
1

α
logE[eαaX ].

If β = αa, then

ρEntα (aX) =
a

β
logE[eβX ]

= aρEntβ (βX) 6= aρEntα (X).

Therefore, it is not positive homogeneous, completing the proof.

Proposition 3 If ρ(·) = E[·], then formulation (2.2) is equivalent to (2.3).

Proof. It can be seen that in formulation (2.3) we use two sets of variables: xe set of blocks
to be extracted and xp set of blocks to be processed. In (2.4), we have the constraint
xpb ≤ xeb ∀b ∈ B, which limits the possibility of processing a block only if it is extracted in
the first place; then, for a certain block b the cost in the objective function can be one of
three possible values:

1. 0 if the block is not extracted, i.e., xeb = 0.
2. ceb if the block is extracted but not processed, i.e., xeb = 1 and xpb = 0.
3. cpb − rbg

ω
b + ceb if the block is extracted and processed, i.e., xeb = 1 and xpb = 1.
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As (2.4)’s objective is to minimize the negative profit of processing the blocks given g̃,
then the decision can be stated as follows:

xpb =

{
1, if cpb < rbg

ω
b ,

0, if cpb ≥ rbg
ω
b .

Moreover, the expression ceb − E[(rbg̃
ω
b − c

p
b )+] can assume exactly the same three pre-

viously described options. Since we can precompute the value of E[(cpb − rbg
ω
b )+], ∀b ∈ B,

we can eliminate the use of a second set of variables. If xb = 1 in (2.2), then it means that
the block must be extracted, whether it is waste or is going to be processed.

C Entropic risk objective function linearization

The risk-averse UP problem can be written as

min
xe,xp,ω∈XEPΩ

1

N

∑
ω∈Ω

exp

α
∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

 , (C.8)

where Ω is the domain of the random variable gb and

XEPΩ :={xe ∈ {0, 1}|B|, xp,ωb ∈ {0, 1}|B×Ω| : xeb′ ≤ x
e
b ∀(b, b

′) ∈ P,
xp,ωb ≤ xeb ∀b ∈ B, ∀ω ∈ Ω}.

We will use two auxiliary variables—vω and zω—where∑
ω∈Ω

vω ≥
1

N

∑
ω∈Ω

exp(zω).

The strategy here is to use an approximation of the exponential function for each term in
the sum of the objective function in (C.8), using the auxiliary variable vω . Problem (C.8)
is equivalent to the following problem:

UPe := min
xe,xp∈XEPΩ

∑
ω∈Ω

vω

s.t. zω ≥ α

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

 ∀ω ∈ Ω,
Nvω ≥ exp(zω) ∀ω ∈ Ω,
vω ≥ 0 ∀ω ∈ Ω.

(C.9)

The nonlinear constraint of (C.9) will be replaced by a piecewise linear approximation,
detailed in the work of [21], for each constraint represented by zω . For differentiable convex
functions (such as f(x) = exp(x)), we can use a lower approximation using the gradient at a
given point ti: f(x)−f(ti) ≥ ∇f(t)(x−tt). We will select a set of K points U := {t1, . . . , tK}
to calculate the value of ∇f(i) ∀i ∈ U and approximate the exponential function using linear
functions as shown in Figure 9.

Using this in (C.9), we obtain the following constraints:

vω ≥ exp(uω − ti) + exp(ti) ∀ω, i ∈ Ω × U,

which in turn can be used to construct our approximated problem:



The risk-averse ultimate pit problem 23

Fig. 9: Subgradient linear approximation of exp(x) using K = 4 support points
where U = {−2,−1, 0, 1}.

UPA := min
xe,xp∈XEPΩ

∑
ω∈Ω

vω

s.t. zω ≥ α

∑
b∈B

cebx
e
b +

∑
b∈B

(cpb − rbg
ω
b )xp,ωb

 ∀ω ∈ Ω,
vω − etizω ≥ (1− ti)eti ∀ω, i ∈ Ω × U,
vω ≥ 0 ∀ω ∈ Ω.

(C.10)

References

1. Henry Amankwah, Torbjörn Larsson, and Björn Textorius. Open-pit mining with uncer-
tainty: A conditional value-at-risk approach. In Athanasios Migdalas, Angelo Sifaleras,
Christos K. Georgiadis, Jason Papathanasiou, and Emmanuil Stiakakis, editors, Opti-
mization Theory, Decision Making, and Operations Research Applications, pages 117–
139, New York, NY, 2013. Springer New York.

2. Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent Mea-
sures of Risk. Mathematical Finance, 9(3):203–228, 1999.

3. Louis Caccetta. Application of optimisation techniques in open pit mining. In Handbook
of operations research in natural resources, pages 547–559. Springer, 2007.

4. Louis Caccetta and Stephen P. Hill. An application of branch and cut to open pit mine
scheduling. In Journal of Global Optimization, 2003.
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