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Abstract
We present a method to solve two-stage stochastic linear programming problems with
fixed recourse when the uncertainty space can have either discrete or continuous distri-
butions. Given a partition of the uncertainty space, the method is addressed to solve a
discrete problem with one scenario for each element of the partition (subregions of the
uncertainty space). Fixing first-stage variables, we formulate a second-stage subprob-
lem for each element, and exploiting information from the dual of these problems, we
provide conditions that the partition must satisfy to obtain an optimal solution. These
conditions provide guidance on how to refine the partition, iteratively approaching an
optimal solution. The results from computational experiments show how the method
automatically refines the partition of the uncertainty space in the regions of interest for
the problem. Our algorithm is a generalization of the adaptive partition-based method
presented by Song and Luedtke for discrete distributions, extending its applicability
to more general cases.
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1 Introduction

We study the following two-stage stochastic program (TSSP) with fixed recourse

min
{
c�x + E [Q(x, ξ)] | x ∈ X

}
(1)

where X ⊆ R
n is a set assumed to be nonempty and closed, ξ is a random vector

in the probability space (Ω,A,P) containing the random elements
{
hξ , T ξ

}
, and

second-stage subproblem

Q(x, ξ) := min
{
q�y | Wy = hξ − T ξ x, y ≥ 0

}
, (2)

where fixed recourse matrix W ∈ R
m×n , deterministic costs q ∈ R

n , random tech-
nology matrix T ξ ∈ R

m×n and random right-hand side vector hξ ∈ R
m . Furthermore,

we assume that there exists some x̄ ∈ X such thatQ(x̄, ξ) is feasible and bounded in
the whole uncertainty space Ω . Without loss of generality, we assume Q(x, ξ) = ∞
if the problem is infeasible. Note that the support of the uncertainty space Ω can be
either continuous or discrete.

In this paper, we propose a method to solve TSSPs by iteratively and automatically
aggregating the uncertainty space into a small number of scenarios and disaggregating
them based on the information of dual subproblem variables. This approach yields
an exact reformulation of the original stochastic programming problem (1) but with
significantly fewer variables and constraints. For the case of discrete distributions, this
idea has been called the adaptive partition-based method (APM) by Song and Luedtke
[34], and it is based on the results of Espinoza and Moreno [11] and Bienstock and
Zuckerberg [5]. We present an alternative proof that allows us to extend APM to a
more general setting, particularly to address TSSPs with continuous distributions for
Ω .

Let P ⊆ Ω , and let T P = E
[
T ξ |P]

and hP = E
[
hξ |P]

be the conditional
expectations of the components of ξ given P . We denote the aggregated subproblem
as

Q(x,E [ξ |P]) = min
{
q�y | Wy = hP − T Px, y ≥ 0

}
(3)

The contribution of this paper is to provide conditions for a partition P of Ω such
that the solution of Problem (1) is equivalent to solving

min
x∈X

{
c�x +

∑
P∈P

Q (x,E [ξ |P]) · P(P)

}
. (4)

Note that this problem is equivalent to a TSSP with a discrete distribution of |P|
scenarios for the uncertainty space. Moreover, this approach enables us to generate
algorithms to obtain exact optimal solutions for general TSSPs.

The remainder of this paper is organized as follows. Section 2 reviews the literature
concerning the APM for discrete TSSPs and other approaches to solve this problem.
Section 3 develops the generalized adaptive partition-based method, with the main

123



Generalized adaptive partition-based method for two-stage…

mathematical results to validate this approach. Section 4 discusses the details of the
algorithms that are implemented for two well-known stochastic programming prob-
lems in Sect. 5. Finally, concluding remarks are presented in Section 6.

2 Literature review

In past decades, researchers have developed solution strategies for multiple stochastic
optimization problems. Although most studies start from the deterministic equivalent
formulation to obtain alternative models that are more tractable in algorithmic terms,
one of themost studied and utilized types of problems is two-stage stochastic program-
ming problems. In their seminal paper, Kleywegt et al. [15] showed that any TSSP
formulation can be approximated by solving Problem (1) for a discrete set of samples
of ξ from the original uncertainty space Ω: they called this result the sample average
approximation (SAA)method. A key fact from their paper is that good approximations
require a large number of scenarios to guarantee an ε-optimal solution. Since then,
most research on this problem has been focused on solving large-scale instances of
discrete TSSPs with many scenarios.

A common and widely studied approach is to decompose TSSPs via the block
structure of the scenario formulation. The most classic approach is called Benders
decomposition (or the L-Shaped method as its stochastic variant [36]).

Most improvements of this approach focused on reducing the algorithm instabil-
ity, such as the case of regularized decomposition [30], level decomposition [17,40]
and inexact bundle methods [22,39]. Recent developments with respect to Benders
decomposition are proposed in [25–27], which primarily explore how to accelerate
and parallelize the technique, and [1,31], which consider how to address integer prob-
lems.

Other decomposition methodologies include stochastic decomposition [12], pro-
gressive hedging [29,38] and stochastic dual dynamic programming [24] for the case
of multistage stochastic programming problems.

A different decomposition approach was developed based on the general decom-
position method proposed by Bienstock and Zuckerberg [5,21]. Espinoza andMoreno
[11] introduced an algorithm based on this decomposition method to minimize risk
measures in linear programs. This idea was later extended by Song and Luedtke [34]
to general TSSPs with discrete distributions, where the term adaptive partition-based
method was coined. These studies have been extended recently by combination with
Benders decomposition [23] and level decomposition [23,35], and new extensions
have been made to multistage stochastic programming problems [33].

As mentioned previously, most recent developments are oriented to the discrete
case, relying on approximation by samples of continuous probability distributions
for uncertain parameters. Exact methods for TSSPs with nondiscrete distributions
are scarce in the recent literature, and they focus mostly on particular problems
and distributions that can be reformulated in a more tractable manner. For exam-
ple, [3] introduced equivalent linear and nonlinear formulations for TSSPswith simple
recourse according to the probability distributions of randomparameters, and [8] posed
a methodology that benefits from the reduced cost of duality and sensitivity analysis to
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fix the correct values of some variables in the stochastic program, thereby reducing the
size of the original problem. Several bounds for TSSPs also have appeared in the classic
literature of stochastic programming. Birge andWets [6] studied different approxima-
tion schemes for stochastic programs with recourse, particularly providing the lower
bound of the problem utilized in our method. Edirisinghe and Ziemba [9] derived an
upper bound for the problem based on the Edmundson–Madansky inequality [10,20]
that assumes boundedness and stochastic independence between the components of
the random variable. This idea was subsequently extended for linear stochastic pro-
gramming problems by Kall and Mayer [14] by partitioning the uncertainty space to
approximate the uncertainty distribution by a finite number of aggregated scenarios.
Their method, named DAPPROX, disaggregates this partition iteratively, theoretically
converging to the true optimal solution. Our proposed method uses a similar idea of
partitioning the uncertainty space and disaggregating them iteratively, but we define
the elements of the partition in a completely different way. In fact, our method does
not require an upper bound, and the partitioning is focused on improving the lower
bound instead of the upper bound.

3 Generalized adaptive partition-basedmethod

We propose a methodology that benefits from a structure shared by aggregated and
atomized subproblems, which later allows us to derive conditions such that the sce-
narios (either finite or an infinite number of them) belonging to a certain subset of
Ω , yield the same expected value of optimal solutions, as if we solve the aggregated
Problem (3).

3.1 Relations between atomized and aggregated subproblems

As afirst step,we define the relation between subproblems (2) and aggregated subprob-
lems (3). It is known that the objective value of the aggregated subproblem provides
a lower bound on the conditional expectation of the atomized subproblems.

Proposition 1 ([6,14]) Let x̄ ∈ X such that Q(x̄, ξ) is convex on ξ , and let P ⊆ Ω .
Then

Q(
x̄,E [ξ |P] ) ≤ E

[Q(x̄, ξ)|P]

A proof of this result comes from the convexity of Q(x̄, ξ) on ξ and Jensen’s
inequality. Nevertheless, a deeper connection between these two problems can be
proved. Lemma 1 shows how a feasible solution of (3) can be constructed using
information from an optimal solution of (2).

Lemma 1 Let x̄ ∈ X and P ⊆ Ω , and let ŷξ be an optimal solution of Q(x̄, ξ) for
ξ ∈ P. Then, ŷ P := E

[
ŷξ |P]

is a feasible solution for Q(x̄,E [ξ |P]).
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Proof Since W ŷξ = hξ − T ξ x̄ for every ξ ∈ P ,

∫

Ω

W ŷξ dP(ξ |P) =
∫

Ω

[
hξ − T ξ x̄

]
dP(ξ |P)

W
∫

Ω

ŷξ dP(ξ |P) =
∫

Ω

hξ dP(ξ |P) −
(∫

Ω

T ξ dP(ξ |P)

)
x̄

WE
[
ŷξ |P] = E

[
hξ |P] − E

[
T ξ |P]

x̄ .

Hence, ŷ P is a feasible solution for Q(x̄,E [ξ |P]). �	
Since these second-stage subproblems are bounded and consider only continu-

ous variables, we can introduce a dual formulation for each subproblem (2) and (3),
respectively,

QD(x, ξ) := max
{
(hξ − T ξ x)�λξ | W�λξ ≤ q

}
(5)

and
QD (x, P) := max

{
(hP − T Px)�λP | W�λP ≤ q

}
. (6)

Indices ξ and P on dual variable λ distinguish between atomized and aggregated
subproblems.

Similar to the primal case, we can construct a feasible solution for problem (6)
based on an optimal solution of (5).

Lemma 2 Let x̄ ∈ X and P ⊆ Ω , and let λ̂ξ be an optimal solution of problem
QD(x̄, ξ) for ξ ∈ P. Then, λ̂P := E

[
λ̂ξ |P]

is a feasible solution for QD(x̄, P)

Proof Since W�λ̂ξ ≤ q for all ξ ∈ P ,

W�λ̂P = W�
∫

Ω

λ̂ξdP(ξ |P) =
∫

Ω

W�λ̂ξdP(ξ |P) ≤
∫

Ω

q · dP(ξ |P) = q.

Hence, λ̂P is a feasible solution for problem QD(x̄, P) whenever set P has positive
measure. �	

3.2 Construction of an optimal partition

The previous framework provides the of tools necessary to identify the conditions on
P to obtain an equality between E [Q(x̄, ξ)|P] and its lower bound Q(x̄,E [ξ |P]).
Proposition 2 Let x̄ ∈ X and P ⊆ Ω , such thatQ(x̄, ξ) is feasible for all ξ ∈ P, and
let λ̂ξ be its dual optimal solutions. If λ̂ξ for ξ ∈ P satisfies

(
E

[
hξ |P])�(

E
[
λ̂ξ |P]) = E

[
hξ �

λ̂ξ
∣∣∣P

]
(7a)

x̄�(
E

[
T ξ |P]�

E
[
λ̂ξ |P]) = x̄�

E

[
T ξ �

λ̂ξ
∣∣∣P

]
(7b)
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then

Q(
x̄,E [ξ |P] ) = E

[Q(x̄, ξ)|P]

Proof From Proposition 1 we know that Q(x̄,E [ξ |P]) ≤ E [Q(x̄, ξ)|P]. The other
inequality comes from Lemma 2 and applying the conditions of the proposition.

In fact, according to Lemma 2, we know that λ̂P := E[λ̂ξ |P] is a feasible solution
of QD(x̄, P); thus,

QD(
x̄, P

) = Q(x̄,E [ξ |P])
≥

(
E

[
hξ |P] − E

[
T ξ |P]

x̄
)�(

E
[
λ̂ξ |P])

=
(
E

[
hξ |P])�(

E
[
λ̂ξ |P]) − x̄�(

E
[
T ξ |P])�(

E
[
λ̂ξ |P])

Since λ̂P satisfies conditions (7), by means of the linearity of the expectation, we
obtain

Q(x̄,E [ξ |P]) ≥
(
E

[(
hξ

)�
λ̂ξ

∣∣∣P
] )

− x̄�(
E

[(
T ξ

)�
λ̂ξ

∣∣∣P
] )

= E
[Q(x̄, ξ)|P]

�	
Finally, we can establish ourmain results as presented in Theorem 1 andCorollary 1

as follows:

Theorem 1 Let x∗ be an optimal solution of problem

min
x∈X

{
c�x +

∑
P∈P∗

Q (x,E [ξ |P]) · P(P)

}
, (8)

where P∗ is a partition of Ω such that for each P ∈ P∗, the optimal dual variables
of Q(x∗, ξ) for ξ ∈ P satisfy conditions (7). Then, x∗ is also an optimal solution of
problem

min
x∈X

{
c�x + E [Q(x, ξ)]

}
. (9)

Proof We first show that the objective value of x∗ in (8) has the same value as that
in (9), so its value is an upper bound for the latter problem. The other inequality is
obtained by the convexity of Q(x, ·) and Jensen’s inequality.

By the laws of total expectation, we know that for any numerable partition P of
Ω ,

E [Q(x, ξ)] =
∑
P∈P

E [Q (x, ξ) |P] · P(P).
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In particular, for x∗ and P∗, according to Proposition 2, we obtain

c�x∗ + E
[Q(x∗, ξ)

] = c�x∗ +
∑
P∈P∗

Q (
x∗,E [ξ |P]) · P(P).

Hence,

min
x∈X

{
c�x + E [Q(x, ξ)]

}
≤ min

x∈X

{
c�x +

∑
P∈P∗

Q (x,E [ξ |P]) · P(P)

}
.

Moreover, if x̂ is an optimal solution of Problem (1), then

c� x̂ + E
[Q(x̂, ξ)

] = c� x̂ +
∑
P∈P∗

E
[Q (

x̂, ξ
) |P] · P(P)

≥ c� x̂ +
∑
P∈P∗

Q (
x̂,E [ξ |P]) · P(P)

≥ min
x∈X

{
c�x +

∑
P∈P∗

Q (x,E [ξ |P]) · P(P)

}
,

where the first equality is true by the laws of total expectation and the second inequality
is given by Jensen’s inequality and the convexity of Q(x̂, ·). �	

Note that this partition always exists, as presented in the following corollary.

Corollary 1 If x∗ is an optimal solution of problem

min
x∈X

{
c�x + E [Q(x, ξ)]

}

then there exists a finite partition P∗ of Ω such that

c�x∗ + E
[Q(x∗, ξ)

] = c�x∗ +
∑
P∈P∗

Q (
x∗,E [ξ |P]) · P(P)

Proof The proof comes from the fact that the feasible set of the dual problem is the
same for all ξ , so their optimal dual solutions must be in one of its extreme points,
inducing an element ofP∗ for each vertex. In fact, note that the dual feasible solutions
λ of Q(x∗, ξ) must satisfy W�λ ≤ q. Hence, for each ξ ∈ Ω , we have an associated
extreme point of W�λ ≤ q that is an optimal dual solution of Q(x∗, ξ). This result
induces a finite partition P∗ of Ω such that all ξ ∈ P, P ∈ P∗ have the same dual
optimal solution of Q(x∗, ξ). Hence, all values satisfy the conditions of Proposition 2,
and

c�x∗ + E
[Q(x∗, ξ)

] = c�x∗ +
∑
P∈P∗

E
[Q (

x∗, ξ
) |P] · P(P)
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= c�x∗ +
∑
P∈P∗

Q (
x∗,E [ξ |P]) · P(P). �	

Wenote that some differences exist between our approach and the original apm pro-
posed in [34]. Themost relevant aspect of our approach is the possibility of extending it
to the case of continuous distribution for the uncertainty space.Moreover, the condition
proposed in the original paper to aggregate scenarios is such that all dual variables λξ

for ξ ∈ P in each subset P ⊂ Ω must have the same value. This is a particular case that
satisfies the conditions of Proposition 2 bymeans of the linearity of the expected value.
Finally, [34] establishes that this criterion is required to have the equality between the
value of the aggregated problem and the expected value of the atomized subproblems.
Nonetheless, the presented conditions of Proposition 2 provide a framework where
less demanding conditions might be applied to aggregate/disaggregate scenarios, e.g.,
degenerated subproblems with multiple optimal dual solutions.

4 Algorithm implementation

The method is presented in Algorithm 1. The idea of the method is to iteratively con-
struct a partition P satisfying the conditions of Proposition 2. Initially, we start with
a trivial partition (P = {Ω}) and split the partition based on the duals of the sub-
problems. This split procedure is problem dependent. At each iteration, the algorithm
provides a lower bound (the optimal value of the aggregated problem) and, potentially,
an upper bound. The upper bound can be computed by solving the expected value of
the subproblem, which is easy to compute in the discrete case by solving the sub-
problem for each scenario independently. However, the computation can be difficult
for continuous distributions. Nevertheless, if an upper bound cannot be provided, the
algorithm can still be applied until the disaggregated partition satisfies the conditions
of Proposition 2.

The key step in the generalized adaptive partition-based method implementation
proposed in Algorithm 1 is how to execute Line 11 correctly. In the case of finite
distribution Ω = {ξ s}, we can simply solve subproblems (2) for each scenario ξ s

and disaggregate P into its subsets satisfying conditions (7). For general continuous
distributions, this step is fine-tuned according to the structure of subproblems (2). We
discuss this case in Sect. 5, showing a few examples of how to execute this disaggre-
gation.

We note that even if Proposition 2 requires that subproblem Q(x, ξ) be feasible
for all ξ ∈ P , we do not require subproblem feasibility for all x ∈ X . If Q(x, ξ) is
infeasible for a subset P ′ ⊆ P , then we can disaggregate the partition splitting P into
two subsets P ′ and P\P ′ and iterate in order to obtain a new first-stage solution.

Another approach to contend with infeasibilities and simultaneously try to satisfy
conditions (7) is to split P using a dual extreme ray of the cone {λξ | W�λξ ≤ 0}.
Assuming that the dual subproblem QD(x̄, ξ) is feasible (and then unbounded for an
infeasible primal subproblem Q(x̄, ξ)), we can obtain an extreme ray by solving the
problem

Q f (x̄, ξ) := max
{
(hξ − T ξ x̄)�θξ | W�θξ ≤ 0, e�θξ ≤ 1

}
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Algorithm 1 An iterative implementation of the generalized APM

Require: A stopping threshold ε and an initial partition P(0) of Ω

Ensure: An optimal partition P∗ to attain an optimal solution x� of Problem (1)

1: Set t := 0, z(0)L := −∞ and z(0)U := ∞.
2: loop
3: t = t + 1
4: Solve Problem (4) for partition P(t) and assign its optimal value to the lower bound z(t)L and its

optimal solution to x̄(t)

5: If possible, compute the upper bound z(t)U := c� x̄(t) + E[Q(x̄(t), ξ)]
6: if z(t)U − z(t)L < ε then
7: exit
8: end if
9: for all P ∈ P(t) do
10: if P does not satisfy conditions (7) for x̄(t) then
11: Disaggregate P to satisfy conditions (7) and construct P(t+1).
12: end if
13: end for
14: if P(t+1) = P(t) then
15: exit
16: end if
17: end loop
18: return optimal solution x� := x̄(t), optimal partition P� := P(t) and optimal value z(t)L

Similar to Corollary 1, since the feasible region of Q f (x̄, ξ) has a finite number
of extreme points, we can disaggregate P into subsets that share the same optimal
solution θξ . Note that this approach always produces a splitting of P . In fact, if the
same solution θ∗ of Q f (x̄, ξ) is optimal for all ξ ∈ P , then θ∗ is also optimal for
Q f (x̄,E[ξ |P]), soQ(x̄,E[ξ |P]) is infeasible, which is not possible because x̄ comes
from Problem (4) considering P as an element of the partition P(t). We also note that
the assumption of feasibility of the dual problem QD(x̄, ξ) is implied, for example,
by the complete recourse conditions for TSSPs.

To show an example, let us apply the algorithm to the problem min x +E[Q(x, ξ)]
with Q(x, ξ) = min{y|y ≤ x ∧ x ≥ ξ} and ξ � U [0, 1]. It is easy to see that
Q(x, ξ) is infeasible for ξ > x when x < 1, but the dual problem QD(x, ξ) =
max{x + (ξ − x)λ|λ ≥ 1} has solution λ = 1 for ξ ≤ x and λ = ∞ in the other
case. Hence, we can disaggregate the partition in each step intersecting its elements
with the segments [0, x̄ (t)] and [x̄ (t), 1]. In this case, the first-stage solution in step t
is given by x̄ (t) = 1 − 1/2t+1, which converges to the optimal solution x∗ = 1.

We also highlight that the optimal solution x̄ (t) of Problem (4) for a partitionP(t) is
also a feasible solution for partition P(t+1), so the lower bound z(t)L does not decrease
in consecutive iterations. In the case of a finite distribution, the convergence is guar-
anteed because in each iteration, we increase the size of P(t), which is upper bounded
by |Ω|. As our previous example exposes, we cannot ensure a finite convergence
for continuous distributions. However, our computational experiments show that the
algorithm quickly converges to a near-optimal solution.
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5 Numerical experiments

Since the fundamental novelty of our proposal arises when stochastic parameters have
continuous probability distributions, the computational experiments are designed to
enlighten algorithmic behavior on two problems with this type of uncertainty from
classic literature on stochastic programming. For the case of a discrete distribution,
we refer the reader to the papers presented in the literature review.

We have divided the computational experiment into three parts. First, we discuss
the implementation and results for a classic problem from the stochastic programming
literature, the LandS instance, wherein uncertainty is presented in the right-hand side
coefficients. The second problem is the TSSP reformulation of conditional value-
at-risk (CVaR) minimization, where the uncertainty appears in the technological
coefficient of the first-stage variables x . Both problems have well-defined structures
that are useful to define the procedure to split the uncertainty spaceΩ at each iteration
of the algorithm. Finally, the third problem is the fixed-charge multicommodity flow
problem under stochastic demand with a discrete distribution, to evaluate the impact
of the generalized conditions of Proposition 2 in comparison to the conditions of [34].

5.1 Energy planning problem—LandS

LandS, a classic problem in stochastic programming that is studied for academic
purposes, was originally proposed in [19]. LandS is an energy planning investment
problem,where the goal is to decide the capacities of four new plantswhileminimizing
allocation and operational costs. The set of power plants is supposed to meet uncertain
demand of three different electric modes. In the first stage, some minimum capacities
and budget constraints must be satisfied; during the second stage, energy is distributed
according to the realization of the uncertain demands. The mathematical formulation
is as follows:

min
x≥0

{∑
i∈I

ci xi + E [Q(x, ξ)] :
∑
i∈I

xi ≥ m,
∑
i∈I

ci xi ≤ b

}

where

Q(x, ξ) := min
y≥0

∑
i∈I

∑
j∈J

fi j yi j (10a)

s.t.
∑
j∈J

yi j ≤ xi , ∀ i ∈ I (10b)

∑
i∈I

yi j ≥ dξ
j , ∀ j ∈ J (10c)

The original problem sets up an uncertain demand for dξ
1 with three scenarios: 3,

5 or 7 units. In this experiment, we assume that dξ
1 follows a uniform distribution in
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3 4 5 6 7

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

1=40.8 1=44 1=51

1=39.8 1=43 1=44 1=51

1=39.8

1=43 1=44 1=46 1=511=39.8

1=43 1=44 1=46 1=51

1=39.8 1=43 1=44 1=46 1=51

Iter x1 x2 x3 x4
1 0.833 3.000 4.167 4.000
2 2.500 3.000 3.500 3.000
3 1.833 4.000 3.667 2.500
4 2.000 4.167 3.583 2.250
5 1.917 4.083 3.625 2.375
6 1.875 4.042 3.646 2.438

Iter LB UB Gap
1 378.667 382.711 1.0567%
2 380.122 381.100 0.2567%
3 380.601 380.844 0.0640%
4 380.842 380.893 0.0007%
5 380.843 380.856 0.0004%
6 380.844 380.847 0.0002%

Fig. 1 Iteration details for the LandS example: partition of Ω (left), current solution and objective bounds
(right) at each iteration

the interval [3,7], following the ideas from [18]. Remaining demands are considered
to be deterministic.

To split the uncertainty space Ω and compute an upper bound for the optimal value
of the problem, we introduce the dual of Q(x̂, ξ) given by

QD(x̂, ξ) := max
ν,μ≥0

∑
j∈J

μ j d
ξ
j −

∑
i∈I

νi x̂i

μ j − νi ≤ fi j ∀i ∈ I, j ∈ J

where ν and μ correspond to the dual variables of constraints (10b) and (10c), respec-
tively. Given an optimal solution of the subproblem for a given value of dξ

1 , we can

use sensitivity analysis to compute a neighborhood around dξ
1 in which the dual opti-

mal variables do not change. Moreover,QD(x, ξ) is a nondecreasing piecewise linear
function on dξ

1 , so the upper bound of Line 5 is easy to compute.
In our experiment, we start with P(0) = {[3, 7]}, and in each iteration, the partition

is refined by dividing the corresponding elements ofP , utilizing the segment extremes
of piecewise linear function QD(x̄ (t), ξ).

In Fig. 1, we show the resulting first six iterations of the algorithm. Columns LB
and UB present the current lower bound (objective value of the aggregated problem)
and the upper bound (computed by the benefit of x̄ (t) and subproblem optimal dual
variables), respectively. The column Gap shows the relative gap between the current
solution and the best upper bound obtained so far. After a few iterations, we obtain
near-optimal solutions for the problem, with a gap close to the computational precision
of the optimization software. In Fig. 1 (left), we present the partition in each iteration
(highlighted by different colors) as well as the segments (dotted lines) obtained after
carrying out the sensitivity analysis. The value under each segment corresponds to
the dual variable of the stochastic demand constraint. Notably, these dual values do
not change after iteration 3, but the extremes of the corresponding intervals change
slightly in each iteration until converging to an optimal solution.

123



C. Ramirez-Pico, E. Moreno

5.2 Conditional value-at-risk linear problems

A classic problem in risk optimization is to minimize the CVaR, which is a well-
known risk measure satisfying the properties of coherency [2]. In our case, we assume
a linear problem, where the objective coefficients r̃ ξ are random, and we minimize
CVaRδ(x�r̃ ξ ) subject to linear constraints Ax ≤ b, where δ indicates the risk aversion
of the decisionmaker. This problem (see [28]) can be reformulated as

min
x,τ

{
τ + 1

δ
E

[
−x�r̃ ξ − τ

]+ : Ax ≤ b

}

In our context, x and τ are the first-stage decisions, while the second-stage sub-
problem is

Q((x, τ ), ξ)) := (−x�r̃ ξ − τ)+ = min{z : z ≥ −x�r̃ ξ − τ, z ≥ 0}

Let us note that the dual of Q((x, τ ), ξ)) has a single dual variable λ, and it can be
formulated as

max
λ

{
(−x�r̃ ξ − τ) · λ : λ ≤ 1, λ ≥ 0

}
.

Hence, an optimal solution of this dual problem is

λ∗ =
{
1 if − x̄�r̃ ξ − τ̄ ≥ 0

0 if not

In other words, there is a hyperplane separating Ω , where the dual variables of the
subproblem Q ((x̄, τ̄ ), ξ) have the same value for a given pair (x̄, τ̄ ).

Therefore, from a partition P(t) of Ω , we can compute r P = E[r̃ ξ |P] and pP =
P(P) for all P ∈ P(t) and solve the aggregated problem

min
x,τ

⎧⎨
⎩τ + 1

δ

∑

P∈P(t)

pP · zP : Ax ≤ b, zP ≥ −x�r P − τ, zP ≥ 0 ∀P ∈ P(t)

⎫⎬
⎭

Given an optimal solution (x̄ (t), τ̄ (t)) of this problem, we can split each P ∈ P(t)

into subsets P ′ = P
⋂{ξ : −x̄ (t)�r̃ ξ ≥ τ̄ (t)} and P ′′ = P

⋂{ξ : −x̄ (t)�r̃ ξ ≤ τ̄ (t)} to
obtain a new partition.

Case study

For the computational test, we solve the classic portfolio problem, where x represents
the fraction of the portfolio assigned to each investment, and the constraints of the first
stage are x�e = 1, x ≥ 0, ensuring to invest thewhole budget in nonnegative fractions.
Additionally, we assume that returns r̃ of each investment follow amultivariate normal
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Table 1 Results for the CVaR
portfolio example

Iter LB UB Gap (%) |P(t)| x1 x2

1 − 0.0702 0.7641 109.184 1 0 1

2 0.0408 0.6054 93.2602 2 1 0

3 0.3196 0.6054 47.2124 4 1 0

4 0.3585 0.7641 40.7887 6 0 1

5 0.4584 0.5104 10.1866 9 0.59 0.41

6 0.5001 0.5222 2.0277 14 0.7752 0.2248

7 0.5043 0.5095 1.0259 20 0.6834 0.3166

8 0.5070 0.5082 0.2305 27 0.6371 0.3629

9 0.5082 0.5082 0.0039 34 0.6375 0.3625

distribution r̃ ξ � N (μ,Σ) using historical data for stocks listed on the S&P 500, as
in [16,37].

Note that in each iteration, given (x̄ (t), τ̄ (t)), we can compute an upper bound for
the problem expressed as

CVaRδ(x̄
(t)�r̃ ξ ) := μ� x̄ (t) + σ

δ
φ(Φ−1(δ)) (11)

where σ = x̄ (t)�Σ x̄ (t) and φ and Φ are the standard normal probability density
function and standard normal quantile, respectively.

We solve the problem using two stocks and a risk level of δ = 0.1 to provide a
graphical representation of the algorithm. To estimate the probabilities and expected
return of each region, we use a Monte Carlo sampler of the underlying distribution.
Table 1 shows the results for our instance. We can notice that the problem converges
quickly to an optimal solution, as well as in the previous LandS example. A more
detailed analysis can be seen in Fig. 2, where the region Ω is presented, with ellipses
indicating the 50%, 80%, 90%, 95% and 99% confidence intervals of the normal
bidimensional distribution. In the first four iterations, the aggregated model considers
only the riskiest scenario (bottom-left dot) and invests the entire portfolio in the stock
with the highest return r ′. Our algorithm generates a cut that divides the uncertainty
region into r ξ

i ≥ r ′ and r ξ
i ≤ r ′, where i is the stockwhere the budget is invested. After

the fifth iteration, the portfolio starts to combine stocks, and the region of interest is
divided more precisely to obtain a better estimation of the optimal problem solution.

Comparison with the sample average approximation technique

We use this example to compare our proposed method to the classical sample average
approximation (saa) technique for TSSP [15]. This technique is very popular because
it allows to approximate the stochastic programming problem for a continuous proba-
bility distribution by a problemwith a discrete distribution of samples from the original
distribution.Moreover, it is known that for a sufficiently large number of samples, both
the optimal value and the optimal solution of the saa problem converge to the optimal
value and solution of the continuous distribution [15,32]. The main problem with saa
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Fig. 2 Partition of Ω at each iteration for the CVaR portfolio example

is that it strongly relies on an appropriate representation of the original uncertainty
space by these sampled scenarios. Furthermore, if too many scenarios are generated,
then the resulting optimization problem is intractable; hence, different techniques have
been studied to improve its performance [13].

To compare both approaches, we solve the same problem with 10 stocks and a risk
level of δ = 0.01. For the saa case, we sample 100,000 scenarios from the distribution,
and we solve the saa problem up to optimality. For gapm, we apply the algorithm
until either the gap is smaller than 1E–4 or until the partition does not further refine.
In both cases, we record the Reported CVaR as the final objective value reported and
the Real CVaR as the real value of the optimal solution of each problem, calculated
using equation (11). We repeat this procedure 100 times with a new set of samples for
both methods to evaluate the sensitivity of each method to different samples.

Figure 3 presents boxplots of the obtained values for each method. We also include
a dashed magenta line indicating the true optimal CVaR value for the problem. It can
be seen that the solution of the saa method changes considerably depending on the
initial sample provided to solve the problem. This occurs because the method should
approximate the uncertainty space of the CVaR problem (in this case, an ellipsis) by
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Fig. 3 Resulting objective values for saa and gapm methods

a convex hull of the scenarios, which is particularly difficult for higher dimensions
and lower risk levels (see [16] for a discussion on this behavior). This also impacts
the true CVaR value of the optimal solutions found, which have a smaller dispersion
but no correlation between the reported and true CVaR values. This correlation can be
observed in Fig. 3c, where the reported and true CVaR value of each run is presented
as a red dot (saa) or a blue cross (gapm), and a blue line indicates the identity.
This is a relevant issue because it indicates that a single run of the saa method is
unreliable, especially as the dimension of the problem increases, and approximation
of the uncertainty space by a convex hull of samples becomes increasingly difficult. In
contrast, gapm provides a more robust approach for the problemwith less dependency
on the samples. Furthermore, the true CVaR values of the resulting solutions have
lower dispersion, and their values are closer to the true optimal value of the problem.
In fact, gapm depends only on samples to evaluate the conditional expected values
and probabilities of the different regions defined by the hyperplanes, which seems
to produce more stable results than those for the optimization problem. Over the
100 runs, gapm requires 15 to 24 iterations to finish, and the final partition size |P|
has between 4296 and 9044 scenario subsets, which is considerably smaller than the
100,000 scenarios utilized by saa to solve the problem.

It is important to note that the computational burden of applying gapm does not
come from the optimization problem itself but rather from the simulation techniques
required to estimate the conditional expected values of each region inP . In these com-
putational experiments, we implemented a naive Monte Carlo simulation with a fixed
set of simulations for all iterations. This step consumes most of the time required by
the algorithm. This is relevant for larger dimensions of the uncertainty space because,
similar to the saa method, gapm can suffer from the curse of dimensionality, result-
ing in more iterations and smaller regions of the uncertainty space and thus more
difficulty to sample correctly. A proper implementation of the algorithm requires spe-
cialized simulation techniques to estimate these values properly, which are known
only for some particular distributions (e.g., see [7] for the Gaussian case), which goes
beyond the scope of this paper. Nevertheless, our experiment shows that gapm works
sufficiently well, even with a simple naive Monte Carlo estimation.
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5.3 Stochastic fixed-chargemulticommodity flow problem

The previous examples aggregate scenarioswith the same vector of optimal dual values
for the subproblem. In this example, we show the impact of applying the conditions
of Proposition 2 to decide how to split the partition in each step of gapm.

The stochastic fixed-charge multicommodity flow problem (SFCMCF) is a well-
known problem in network design, where different methods have been developed to
solve the stochastic case, most of which were based on Benders cuts [26]. In this
problem, a first-stage decision is taken to construct arcs in a network with a predefined
capacity, and a multicommodity flow must be routed through the constructed network
minimizing the construction costs plus expected cost of the routing. Let G = (V , E)

be the potential network to be constructed,where each arc (i, j) ∈ E has a construction
cost fi j and a capacity ui j . Let K be a set of commodities, where each commodity
k ∈ K has a random demand d̃k that must be routed from an origin node O(k) to a
destination node D(k) with a unitary cost of ci jk in each arc (i, j) ∈ E . The problem
is then formulated as

min
x∈X

∑
(i, j)∈E

fi j xi j + E[Q(x, ξ)]

where

Q(x, ξ) := min
y≥0

∑
k∈K

∑
(i, j)∈E

ci jk yi jk (12a)

s.t.
∑

j :(i, j)∈E
yi jk −

∑
j :( j,i)∈E

yi jk =

⎧⎪⎨
⎪⎩

dξ
k i = O(k)

−dξ
k i = D(k)

0 other case

∀i ∈ V , k ∈ K (12b)

∑
k∈K

yi jk ≤ ui j xi j ∀(i, j) ∈ E (12c)

First-stage decision variables x are binary variables indicating if arc (i, j) ∈ E is
constructed. Second-stage decision variables yi jk are the flow of commodity k routed
through arc (i, j) ∈ E . Constraints (12b) are the classic flow constraints for each
commodity, and constraints (12c) are capacity constraints in each constructed arc over
the total flow of all commodities.

In this case, we can provide a simpler condition for aggregating scenarios due to
Proposition 2. In fact, note that first-stage variables x do not have random coefficients
on the subproblem, so conditions (7b) are always satisfied. Moreover, the right-hand
side coefficients of the subproblem are equal to zero except for the origin and desti-
nation nodes of each commodity. Hence, conditions (7a) can be written as
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∑
k∈K

E[dξ
k |P]

(
E[λξ

O(k),k |P] − E[λξ

D(k),k |P]
)

=
∑
k∈K

E

[
dξ
k · (λ

ξ

O(k),k − λ
ξ

D(k),k)|P
] (13)

where λ
ξ
ik corresponds to the dual variable of constraints (12b) for i ∈ V , k ∈ K.

The previous condition provides useful information on how to construct a partition
P to apply Theorem 1. For example, the condition is satisfied if each P ∈ P has the
same demands (dξ

k )k∈K or the same vector of differences of dual variables (λ
ξ

O(k),k −
λ

ξ

D(k),k)k∈K for each ξ ∈ P . Note that these conditions require comparing a vector
of size |K| among the scenarios, which is considerably smaller than comparing the
complete vector of dual variables, which has size |V | · |K| + |E |.

If the subproblem is infeasible (which occurs when the arcs’ capacities are not
sufficient to route all the demand in the scenario), we disaggregate the partition using
extreme rays of the subproblems, as mentioned in Sect. 4.

Case study

We test our conditions on the Canad instances R from ORlib [4]. In particular, we
consider the stochastic version of these instances presented in [26]. In this experiment,
we use instances with a discrete distribution of 1000 scenarios.We apply our algorithm
over 4 instance classes (r04, r05 and r07, r08), with five different levels of correlations
among commodities and seven different cost/capacity configurations (I1 to I7). We
omit instances r06 and r09 (with 50 commodities) and configurations I8 and I9 because
none of the implemented methods are able to solve these problems efficiently.

We compare three different approaches: First, mip corresponds to the extended
formulation of the problem. Second, gapm corresponds to Algorithm 1 disaggregating
in each iteration among the scenarios with the same differences of dual variables
(λ

ξ

O(k),k−λ
ξ

D(k),k)k∈K. Finally,apm also corresponds toAlgorithm1 but disaggregates
the partition among the scenarios with the same complete vector of dual variables, as
originally presented in [34].

Figure 4a shows the percentage of instances solved up to optimality over time,
with a time limit of 6 h. It can be seen that the adaptive partition method outperforms
the extended formulation of the problem, particularly solving a larger percentage of
instances in shorter times. Moreover, it can be seen that our generalized conditions
presented in Proposition 2 and (13) allow to considerably improve the performance of
the algorithm, when compared with the former conditions presented in [34]. Figure 4b
provides insights to understand this behavior. The figure shows boxplots with the
size of |P| at the end of the algorithm. It can be seen that apm requires a partition
smaller than the number of scenarios for configurations I1, I2 and I3, allowing a
faster solution of the problem than the extended mip formulation. In contrast, for the
other configurations, the required size for P is similar to the number of the scenarios,
obtaining no benefit from running apm instead of mip. This explains why the number
of instances solved by mip becomes closer to apm over time. The figure also shows
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(a) Instances solved over time (b) Final partition size |P|

Fig. 4 Performance of the different methods for stochastic fixed-charge multicommodity flow problems

that gapm requires considerably smaller partition sizes to solve the problem, due to
the tightened condition provided by Proposition 2. In fact, it can solve most of the
instances with configurations I1 to I6. However, we can see that for configuration I7,
in most of the cases, all scenarios are equally important to obtain the optimal solution,
so no efficient aggregation can be performed.

Notes

Finally, we note that in both computational examples, several algorithmic improve-
ments can be implemented to solve larger and more complex problems (e.g.,
reaggregating regions with the same duals, considering only the last k cuts, or subdi-
viding only the active regions; see [21] for more details). Nevertheless, our purpose
is simply to show how the method can automatically divide the uncertainty space to
iteratively define the regions of interest for the problem and obtain an optimal solu-
tion. We also note that for problems with high dimensional uncertainty and different
continuous distributions, it could be challenging to compute conditional expectations
and element probabilities.

6 Conclusions

We present a generalization of the adaptive partition-based method for solving two-
stage stochastic programming problems that contributes to extending the method to a
more general setting, particularly, to consider continuous distributions of the uncertain
parameters. The resulting algorithm allows for this type of problem to be addressed by
automatically disaggregating the uncertainty space and solving a discrete (tractable)
problem in each iteration. Computational experiments show the efficacy of the method
to refine the uncertainty space in different regions of interest. It is important to remark
that the refining procedure depends considerably on the structure of the problem, but
it is sufficiently general for a broad family of problems. We are confident that this
research represents a starting point for further development of computational methods
for stochastic programming problems with continuous distributions.
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