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Abstract. Given a discretized representation of an ore body known as a block model, the
open pit mining production scheduling problem that we consider consists of defining
which blocks to extract, when to extract them, and how orwhether to process them, in such
away as to complywith operational constraints andmaximize net present value. Although
it has been established that this problem can bemodeledwithmixed-integer programming,
the number of blocks used to represent real-world mines (millions) has made solving large
instances nearly impossible in practice. In this article, we introduce a newmethodology for
tackling this problem and conduct computational tests using real problem sets ranging in
size from 20,000 to 5,000,000 blocks and spanning 20 to 50 time periods. We consider both
direct block scheduling and bench-phase scheduling problems, with capacity, blending,
and minimum production constraints. Using new preprocessing and cutting planes
techniques, we are able to reduce the linear programming relaxation value by up to 33%,
depending on the instance. Then, using new heuristics, we are able to compute feasible
solutions with an average gap of 1.52% relative to the previously computed bound.
Moreover, after four hours of running a customized branch-and-bound algorithm on the
problems with larger gaps, we are able to further reduce the average from 1.52% to 0.71%.
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1. Introduction
The central concern of strategic open pit mine plan-
ning is the construction of a tentative production
schedule. This is a life-of-mine plan (20–50 years)
specifying which part of a mineral deposit should be
extracted, as well when and how, so as to maximize
the value of the mining project while satisfying op-
erational and economic constraints. In the early stages
of amining endeavor, a strategic production schedule
provides insight into the cash flows of a project (e.g.,
capacity investments and production goals), and as
such, it is critical to investors. Moreover, early stra-
tegic decisions in a mine planning project are binding
for and critical to long-term profits. It is widely ac-
knowledged that, amongst all stages in amining project,
strategic mine planning has the most significant impact
on the overall costs (Hustrulid and Kuchta 2006).

Strategic mine planning begins with the construc-
tion of a discretized mathematical representation of
the ore body, known as a blockmodel. This is typically a
three-dimensional array of units of equal size, called
blocks. The horizontal levels of this array are referred
to as benches. To each block, a number of geological
attributes are assigned based on data retrieved from
exploration drill holes, including mineral and con-
taminant grades, rock types, and rock density.
A strategic mine plan, or production schedule,

specifies which blocks are extracted, their time of
extraction, and their destination once they have been
extracted. Destinations represent not only physical
locations, but also block processing and treatment
options. Examples of block destinations includemills,
waste dumps, leach pads, and stockpiles.
Amongst others, production schedules must com-

ply with capacity and spatial constraints. While the
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former limit the amount of material which can be
mined and sent to each destination, the latter ensure
the accessibility of blocks and the safety of mining
operations. The most common spatial constraints
consist of imposing minimal wall-slope angles (to
prevent cave-ins or wall-slope failures) and ensuring
that extraction regions are wide and contiguous so as
to accommodate ramps and roads for large equip-
ment. Additional constraints are often imposed to
address blending, stockpiling, and other concerns.

In practice, given the complexity of holistic ap-
proaches, the strategic open pit mine planning prob-
lem is subdivided into two more manageable prob-
lems. The first subproblem, which we term the open
pit phase design problem (OPPDP), involves sub-
dividing the deposit into large contiguous spatial units
known as phases or pushbacks. Phases define the stages
in which the deposit is to be excavated, and they are
designed such that profitable parts of the mine are
quickly reached while maintaining operational fea-
sibility. The second subproblem, which we call the
open pit production scheduling problem (OPPSP),
consists of computing a production schedule detail-
ing when and how the blocks in each phase should
be extracted. Phases are extracted bench-by-bench,
beginning with the blocks in Phase 1. The extraction
of blocks in Phase 2 should begin during or after
the extraction of the blocks in Phase 1, and so on. For
a more detailed description of this scheme, see
Hustrulid and Kuchta (2006).

Starting with the doctoral dissertation of Johnson
(1968), a majority of academic papers regarding math-
ematical programming methods for strategic open pit
mine planning have focused on the OPPDP. In addi-
tion, most of them have considered a simplification
of the OPPDP known as the capacitated pit problem
(C-PIT), which considers predefined destinations for
each block and simple classes of constraints. Even
these simplified problems, however, have proved very
challenging considering the scale of practical problem
instances and the difficulty of solving even their LP
relaxations.

The works of Boland et al. (2009) and, shortly af-
terward, Bienstock and Zuckerberg (2009, 2010) mark
a significant departure from previous results in two
regards. First, they introduce a mathematical program-
ming formulation that generalizes both the OPPDP
and OPPSP, with block-destination selectivity, block
clustering, and arbitrary constraints. Second, they
present an effective decomposition method for solv-
ing the LP relaxation for problems of realistic size.

In this article, we build on the work of Bienstock and
Zuckerberg (BZ) by proposing a framework for solving
the problem with integral variables. This framework
includes preprocessing, cutting plane, heuristic, and
specialized branching techniques. A novel aspect of our

work is that we discuss both the phase-design (OPPDP)
and production scheduling (OPPSP) steps of the stra-
tegic mine planning problem and propose problem-
specific techniques for each. Another novel aspect is
that we consider realistic, but more complicated, con-
straints in our computations, including blending, flow-
balance, and minimum production. Extensive compu-
tational tests show that we can solve both the OPPDP
and OPPSP to near-optimality in a very reasonable
amount of time. To our knowledge, this is the first time
this is achieved.

2. Formulating the Phase Design and
Production Scheduling Problems

In this section, we describe the precedence-constrained
project scheduling problem with clusters (PCPSP-C),
along with an integer programming formulation of it.
In addition, we show how one can formulate both the
OPPDP and OPPSP as a PCPSP-C and survey dif-
ferent methodologies proposed for solving this and
similar problems.

2.1. Definitions and Notation
Let @ represent the set of blocks of a discretized ore
body, and let $ be the set of possible destinations to
which a block can be sent. For each b ∈ @ and d ∈ $, let
pb,d represent the estimated value obtained by sending
b to d, and let pb,∗ � max{pb,d : d ∈ $}, bearing in mind
that these values can be negative. Let 7 � {1, . . . ,T}
represent the time periods in which decisions can be
made. Let pb,d,t represent the value obtained from
sending b to d within time period t. We assume that
pb,d,t is obtained from pb,d by applying a discount factor
r > 0 over time, that is, pb,d,t � pb,d/(1 + r)t.
Consider b1, b2 ∈ @. Define b1 to be a precedence of

b2—formally, b1 ≺ b2—if b1 must be extracted no later
than b2. Precedence relationships between blocks
are imposed to ensure minimum wall-slope angles
and, thus, avoid wall-slope failures or cave-ins. See
Khalokakaie et al. (2000) for a description of how one
determines these precedence relationships in practice.
Given sets B1,B2 ⊆ @, we write B1≺ B2 if there exist

b1 ∈ B1 and b2 ∈ B2 such that b1≺ b2.
Given a set P ⊆ @, we say that P is a pit in @ if

b1≺ b2 ∧ b2 ∈ P ⇒ b1 ∈ P. Also, a sequence of pits
P1,P2, . . . ,Pn ⊆ @ is nested if P1 ⊆ P2 ⊆ . . . ⊆ Pn.
Let# be a partition of the set of blocks@. That is, the

sets in # are pairwise disjoint, and they cover the
entire set @. We henceforth refer to the elements of #
as clusters. Assume that ≺ induces a partial order over
the elements of #. Let ! ⊆ # × # be the arcs repre-
senting the directed acyclic graph (DAG) induced by
≺ in #. That is, (c2, c1) ∈ ! if and only if c1 ≺ c2. Note
that we chose the arc directions such that a cluster’s
out-neighbors are its precedents. For computational
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purposes, we assume! to be the transitive reduction
of this arc set. In other words, ! is composed only of
immediate precedence relationships: if (c1, c2) ∈ ! and
(c2, c3) ∈ !, then (c1, c3) /∈ !.

Given c ∈ #, we define the closure of c, or cl(c), and
the reverse closure of c, or rcl(c), as follows:

cl c( ) � c{ } ∪ c′ ∈ # : c′ ≺ c{ },
rcl c( ) � c{ } ∪ c′ ∈ # : c ≺ c′{ }.

Although each c ∈ # is a set, we use lowercase letters
to represent these elements (as opposed to the usual
uppercase notation). This is mainly becausewe define
variables using each c ∈ # as a subscript. For each
b ∈ @, let c(b) represent the unique cluster c ∈ # such
that b ∈ c. We use clusters to indicate that sets of
blocks should be extracted simultaneously in a mine-
planning solution. That is, all the blocks in a single
cluster are extracted in exactly the same proportion in
each time period. These clusters only enforce an
extraction-related constraint, as the destination of
each block can be different from the destination of
other blocks in the same cluster.

For each block b ∈ @, let qb be its weight (or amount
of material). For each t ∈ 7, let Ut represent the
maximum amount of material that can be extracted
in time period t, and let Ud

t represent the maximum
amount of material that can be sent to destination d ∈
$ in time period t ∈ 7.

Let variables xc,t indicate the proportion of cluster
c ∈ # extracted in time t ∈ 7. For each b ∈ @, d ∈ $,
and t ∈ 7, let the variable yb,d,t indicate the proportion
of block b sent to destination d in time t. In (1)–(7), we
describe a mixed-integer programming formulation
proposed by Bienstock and Zuckerberg (2009), which
generalizes both the OPPSP and OPPDP. Although
these authors originally refer to this problem as the
parcel assignment problem (PAP), we henceforth
refer to it as the precedence-constrained production
scheduling problem with clusters (PCPSP-C):

max
∑
b∈@

∑
d∈$

∑
t∈7

pb,d,tyb,d,t (1)

s.t. xc,t �
∑
d∈$

yb,d,t ∀c ∈ #, b ∈ c, t ∈ 7, (2)∑
t∈7

xc,t ≤ 1 ∀c ∈ #, (3)
∑t
t′�1

xc,t′ ≤
∑t
t′�1

xc′,t′ ∀ c, c′( ) ∈ !, t ∈ 7, (4)
Gy ≤ g, (5)
yb,d,t ≥ 0 ∀b ∈ @, d ∈ $, t ∈ 7, (6)
xc,t satisfies an integrality condition

∀c ∈ #, t ∈ 7. (7)

Here, the objective function (1) maximizes the net
present value of the solution. Constraints (2) impose
consistency between the x and y variables, ensuring
that, in each period, all blocks within a cluster are
extracted and processed in the same proportion.
Constraints (3) impose that a cluster can be extracted
at most once and (4) impose the precedence relation-
ships. Constraints (5) represent general operational
requirements, (6) bound the variables, and (7) impose
integrality conditions on the x variables. The exact
nature of constraints (5) and (7) depends on specific
considerations of the model, and we show some com-
mon choices below. Nevertheless, we should point out
that, regardless of the application, constraints (5) typi-
cally include conditions of the form:∑

b∈@

∑
d∈$

qbyb,d,t ≤ Ut ∀t ∈ 7, (8)∑
b∈@

qbyb,d,t ≤ Ud
t ∀d ∈ $, t ∈ 7, (9)

where (8) and (9) impose mining and destination
capacity limits, respectively.
We denote by LP-PCPSP-C the linear programming

(LP) relaxation of the PCPSP-C, that is, the relaxation
obtained from (1)–(7) by removing constraints (7).
Note that, due to the general constraints (5), the
PCPSP-C, and even its LP relaxation, may be in-
feasible. However, if G ≥ 0, then the null solution
(x, y) � (0, 0) is feasible.
In this work, we consider two different integrality

conditions (7):
• The following conditions define full integrality

constraints,

xc,t ∈ 0, 1{ } ∀c ∈ #, t ∈ 7. (10)
These ensure that each block must be extracted en-
tirely in a single time period.
• The following conditions define partial integrality

constraints,

∑t
t′�1

xc,t′ > 0 implies
∑t
t′�1

xc′,t′ � 1 ∀ c,c′( ) ∈!, ∀t ∈7.

(11)
These constraints allow the duration of cluster ex-
traction to span multiple time periods; however, they
specify that a cluster must be entirely extracted before
any of its successors can, in turn, be extracted.
Partial integrality conditions (11) are often imposed

in commercial software packages, such as GEOVIA
Whittle (Dassault Systèmes 2019), which, to our
knowledge, were first identified in Gershon (1983).
Note that, by using either (10) or (11), the PCPSP-C
has a bounded feasible set. Thus, there exists an
optimal solution whenever the set is nonempty.
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From this point onward, we refer to PCPSP-C
whenever a technique is independent of the exact
nature of (7) (e.g., when the discussion concerns the
LP relaxation); otherwise, we use PCPSP-F or PCPSP-
P if the technique applies to the PCPSP-C under full
integrality conditions (10) or partial integrality con-
ditions (11), respectively. Similarly, the OPPDP and
OPPSP can be formulated as special cases of the
PCPSP-C.

2.2. The Phase Design Problem (OPPDP)
The objective of solving an open pit phase design
problem (OPPDP) is to compute a sequence of nested
pits, which a mining engineer can subsequently use
to define phases. The OPPDP is the specific case of the
PCPSP-F in which all the clusters are singletons
(i.e., each cluster corresponds to a single block) and in
which G, g ≥ 0. Instances of the OPPDP with a single
destination per block are sometimes known as C-PITs,
as in Chicoisne et al. (2012), whereas those instances
with multiple destinations per block are sometimes
referred to as open pit mine production scheduling
problems (OPMPSPs), as in Boland et al. (2009), or
PCPSPs, as in Bienstock and Zuckerberg (2009). In
general, instances of theOPPDP are often just referred
to as direct block scheduling problems.

Observe that feasible solutions of the PCPSP-C
always correspond to a sequence of nested pits, re-
gardless of how the clusters are defined. In fact, for
every t ∈ 7 andevery feasible solutionx of the PCPSP-C,
the set @(x; t) � {b ∈ @ :

∑t
t′�1 xc(b),t′ > 0} defines a pit.

Furthermore, the sequence @(x; 1), . . . ,@(x; 2), . . . ,
@(x; T) is nested. By defining clusters as singletons, it
is possible to generate the best possible sequence of
nested pits using the OPPDP in terms of net present
value.

Traditionally, nested pits for phase design have
heuristically been computed in the mining commu-
nity using parameterized maximum closure algo-
rithms. See Lerchs andGrossmann (1965), Hochbaum
(2008), and Hustrulid and Kuchta (2006) for details.

Ideally, pits should be few in number, and the vol-
umetric difference between consecutive pits should
define wide contiguous areas, where one can easily
accommodate ramps and where equipment (shovels,
trucks) can work and move around easily; however,
neither the pits generated by solving the OPPDP nor
those obtained via parametric analysis necessarily meet
these conditions. Moreover, it is not clear how one can
modify thesemethodologies so that these conditions are
met. In practice, this issue is addressed through the pits
computed by the OPPDP or by parametric analysis as
“guides” in a manual design process. This process be-
gins with a sequence of pits P1,P2, . . . ,Pn, and by us-
ing specialized computer-aided design (CAD) soft-
ware systems such as Deswik.CAD (2017) or Maptek

Vulcan (2017), it constructs a new sequence P′
1,P

′
2, . . . ,P

′
k

such that the required operational conditions hold.
These new pits, in turn, are used to compute a se-
quence of phases ϕ1,ϕ2, . . . ,ϕn, where ϕ1� P′

1 and
ϕj � P′

j \ P′
j−1 for all j> 1.

Although ultimately both the OPPDP and paramet-
ric analysis are heuristic mechanisms by which to
generate nested pits, the use of the OPPDP makes it
easier to control the size and number of pits. See
Meagher et al. (2014) for a discussion of the limita-
tions of parametric analysis.

2.3. The Production Scheduling Problem (OPPSP)
The openpit production scheduling problem (OPPSP) is
a specific case of the PCPSP-P in which all clusters
correspond to bench-phases, defined as the intersection
of a bench and a phase.Asmentioned above, each bench
corresponds to a horizontal level of the blockmodel, and
each phase is the output of the phase design process
described in Section 2.2. The OPPSP is very closely
related to the cutoff grade optimization problem,
originally proposed by Lane (1964). See Bienstock and
Zuckerberg (2009) for a discussion of how LP duality
can be used to demonstrate the relationship between
the OPPSP and cutoff grades.
As discussed in Section 2, given two clusters c1, c2,

we have that c1≺ c2 whenever there exist b1 ∈ c1 and
b2 ∈ c2 such that b1≺ b2. In practical applications, it is
common to also use additional precedence relation-
ships. For example, it is often required that clusters in
the same bench be extracted in the order prescribed by
the phases (e.g., Tolwinski 1998). This requirement is
easy to model in the OPPSP, as it is simply a matter of
adding arcs to set !.
Figure 1 illustrates how a particular phase design

could determine the definition of clusters used and
the precedence relationships between them. In this
figure, we let phi be the ith phase and let bni be the ith
bench. For phase phi and bench bnj, let Cli,j be the
corresponding cluster obtained from the intersection
of phi and bnj.
OPPSP formulations tend to be more detailed than

OPPDP formulations. In addition to (9), inequal-
ities (5) can include other mining constraints, such as
those related to flow-balance, material blending, and
stockpiles.

3. Previous Methodological Work and
Contributions of This Article

A typical mine planning problem is composed of 1–5
million blocks, 20–50 time periods, and 2–3 destina-
tions, which results in a huge number of decisions,
leading to models that are impossible to solve with
commercial integer programming solvers; even solv-
ing the LP-PCPSP-C has proved elusive. To date,
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optimization approaches are varied and, to a large
extent, work by exploiting problem-specific charac-
teristics, such as the type of problem being solved (C-
PIT, PCPSP, or PCPSP-C) and/or the characteristics of
the matrix G, for example, G ≥ 0, or G general.

The earliest work attempting to solve PCPSP-C
dates back to Johnson (1968), who proposed using
the decomposition ofDantzig andWolfe (1960) for the
LP relaxation of the PCPSP but without any methods
for computing integer-feasible solutions; he only man-
aged to solve instances with up to 36 blocks. After
Johnson’s work, most optimization research regard-
ing the PCPSP-C has focused on studying C-PIT, that is,
the variant of the PCPSP-C in which each cluster is a
single block with a single destination per block, full
integrality conditions are assumed, and there are only
positive (upper-bound) capacity constraints. Important
milestones in this direction include the following:

• Dagdelen (1985) andDagdelen and Johnson (1986)
study problemswith up to 5, 400 blocks by solving the
LP relaxation with Lagrangian relaxation. The au-
thors argue that, in practical mining problems, primal
feasibility is not so important, and they propose using
the solution of the Lagrangian pricing problem as the
primal output. Even though this solution is integer-
feasible, it can violate capacity constraints.

• Caccetta and Hill (2003) prove that a common
preprocessing technique based on computing ultimate
pit limits is correct for C-PIT. They also claim to solve
problemswith up to 209, 664 blocks to optimality with
a customized branch-and-bound approach. Their
methodology is not described, citing commercial
interests.
• Gaupp (2008) addresses problems with up to

25, 620 blocks by combining Lagrangian relaxation
and customized rounding heuristics and by intro-
ducing the notion of “early starts” and “late starts” for
preprocessing and LP bound strengthening.
• Cullenbine et al. (2011) and Lambert andNewman

(2014) handle problems with up to 25, 620 blocks by
combining tailored Lagrangian relaxation and a slid-
ing time window heuristic. Their results are the first to
consider instances with lower-bound capacity con-
straints. Solutionswithin4% of optimality are obtained.
• Espinoza et al. (2012) make a collection of OPPDP

instances available by means of the MineLib website.
These instances range in size from 1, 060 to 2, 140, 342
blocks.
• Chicoisne et al. (2012) develop a customized de-

composition algorithm for solving the LP relaxation
of instances with only a single capacity constraint
per period. To obtain integer-feasible solutions, they

Figure 1. (Color online) Example Illustrating the Definition of Phases, Benches, Clusters, and the Precedences Between
Clusters

Notes. Each arrow represents an immediate precedence relationship. The head of each arrow corresponds to the predecessor in the corre-
sponding precedence relationship.
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propose a heuristic called TopoSort and a local search
heuristic for further refinement. Solutions within 2%
of optimality are reported for instances with up to 4
million blocks. By using the algorithm for variants of
the instances with two capacity constraints, solutions
with a provable gap of 4% are computed.

• Vossen et al. (2016) develop a customized branch-
and-boundmethod using Benders’ decomposition and
customized heuristics. The approach considers lower-
bound constraints and a novel type of integrality.
Problems with up to 25, 620 blocks are solved to 1% of
optimality.

• To date, the best-known solutions for the C-PIT
are those produced by three recent heuristics. Jelvez
et al. (2016) propose a heuristic combining aggrega-
tion and disaggregation, Liu and Kozan (2016) pro-
pose a topological sorting heuristic which does not
take as input an LP relaxation solution, and Samavati
et al. (2018) extend TopoSort by introducing a diving
component guided by genetic algorithms. All of these
papers improve the best gaps reported for MineLib
instances.

Complementary works related to optimization meth-
odologies for C-PIT include the following:

• Fricke (2006), Bley et al. (2010), and Espinoza
et al. (2015) study clique, cover, and other inequalities
on precedence-constrained knapsack problems and
derive cuts and separation algorithms.

• A number of articles have proposed aggregating
variables to obtain smaller problems which are di-
rectly solvable with commercial integer program-
ming solvers. These methods vary depending on how
clusters are defined. Important examples encompass
the fundamental trees of Ramazan et al. (2005), the
mining blocks of Smith and Wicks (2013), the mining
cuts of Askari-Nasab et al. (2010, 2011), and the clumps
of Froyland and Menabde (2011).

• A number of articles have studied stochastic
variants of C-PIT. For reference, see the work of
Boland et al. (2008), Ramazan and Dimitrakopoulos
(2013), and Rimélé (2016).

The work of Boland et al. (2009) represents a sig-
nificant departure from earlier research, as they aban-
don the study of C-PIT and instead tackle the more
general PCPSP (i.e., with multiple destinations and
general classes of constraints). In their work, they de-
velop a customized decomposition method that works
by aggregating and disaggregating blocks. In compu-
tational experiments, they solve instances with up to
96, 000 blocks to 1% of optimality.

• Bienstock and Zuckerberg (2009, 2010) general-
ize the formulation and decomposition method of
Boland et al. (2009) to the more general PCPSP-C
(which they call the PAP). Though their formula-
tion generalizes both the OPPDP and OPPSP, their
computational experiments focus on instances of the

former, discussing neither model in detail and study-
ing only the LP relaxation of the problem.
• Muñoz et al. (2018) build on thework of Bienstock

and Zuckerberg (2009), extending its applicability to
broader classes of scheduling problems, comparing
the extension with other decomposition approaches,
and introducing a number of computational enhance-
ments. Similar to Bienstock and Zuckerberg (2009),
this article only focuses on LP relaxations.
• Goycoolea et al. (2013, 2015) discuss how solu-

tions generated by the PCPSP-C formulation compare
with those generated by traditional commercial soft-
ware, frombothmodeling and computational viewpoints.
• King et al. (2017) extend the PCPSP-C to model

open-pit-to-underground transition problems, and
Moreno et al. (2017) extend the PCPSP-C to model
stockpiles.
Also, a different approach based on network flows

and aimed at a simultaneous, aggregated analysis of
multiple mine sites is that of Epstein et al. (2012).
In this article, we extend many of the aforemen-

tioned methodologies, originally developed in the
context of the C-PIT, to the context of the PCPSP-C.
We emphasize how these methodologies can be used
to solve both the OPPDP and OPPSP, each of which
requires some problem-specific techniques. Overall,
our extensions mostly focus on the decisions which
affect clusters of blocks rather than individual blocks,
the multiplicity of destinations which a block can
have, and the possibility of admitting partial in-
tegrality. In addition, we propose a number of new
methodologies. We are especially concerned with
techniques that are useful for the OPPSP, which has
received much less attention in academic literature.
Our work introduces new classes of cutting planes
and heuristics designed to reduce the large integrality
gaps observed in OPPSP instances. We also imple-
ment a specialized branch-and-bound algorithm.
Finally,we show that all of thesemethodologieswork

well when integrated. Most, if not all, academic papers
have studied these techniques individually, rather than
in concert. This integration is key to showing, for the
first time, that it is possible to solve to near optimality
instances of both the OPPDP and OPPSP on real mine
planning data sets, such as those handled by com-
mercial mine planning software systems.

4. Preprocessing
As discussed above, PCPSP-C can be very large in
terms of the number of variables and constraints. In
this section, we present techniques for transforming
this problem into a mathematically equivalent one
which possesses fewer variables. In other words, we
reduce the dimension of the problem without af-
fecting the optimal objective function value.
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4.1. Ultimate Pit Limit Preprocessing
In this subsection, we describe a preprocessing scheme
that can be used to eliminate variables from an instance
of PCPSP-C by identifying clusters that provably do not
appear in an optimal solution of the problem. The
scheme is a generalization of one proposed by Caccetta
and Hill (2003) in the context of C-PIT, which we
extend to general instances of PCPSP-C, in which
G, g ≥ 0.That is, the generalization works for both
partial and full integrality and also for instances with
clusters which are not necessarily singleton blocks.

In general, given an optimization problem defined
over a region S ⊆ Rn, we say that an optimal solution
x ∈ S isminimal if every other optimal solution x′ ∈ S is
such that x′ ≤ x implies x′ � x.

For each c ∈ #, define p̄c � ∑
b∈c pb,∗, where pb,∗ �

maxd∈$ pb,d (as defined in Section 2). We define the
ultimate pit limit problem (U-PIT) of a PCPSP-C in-
stance (see Formulation (1)–(7)) as

max
∑
c∈#

p̄cxc (12)
s.t. xc ≤ xc′ ∀ c, c′( ) ∈ !, (13)

xc ∈ 0, 1[ ] ∀c ∈ #. (14)
Note that, because this problem does not consider
limited resources, there is no need to define variables
over multiple time periods.

U-PIT is a maximum closure problem. As such, (a)
its Formulation (12)–(14) is totally unimodular, and
hence, its optimal basic solutions are binary; (b) it
admits a unique minimal optimal solution; and (c) it
can be solved efficiently. For more information about
themaximum closure problem, seeHochbaum (2008).

Given a vector x ∈ [0, 1]# that is feasible for U-PIT,
we say that P � {c ∈ # : xc > 0} is the pit limit associ-
ated with x. Let (x∗, y∗) represent a minimal optimal
solution to PCPSP-C. For each c ∈ #, let x1c � ∑

t∈7 x∗c,t.
Since x∗ satisfies constraints (4), it follows that x1 is
feasible for U-PIT. Let us define POPT as the pit limit
associated with x1. Slightly abusing notation, let POPT

be the pit limit associated with the minimal solution
(x∗, y∗).

The following theorem generalizes a result of
Caccetta and Hill (2003). The proof is presented in the
e-companion of this article.

Theorem1. Consider an instance of PCPSP-C, as described
in Formulation (1)–(7), such that G ≥ 0 and g ≥ 0. Let POPT

and PU-PIT be the pit limits of the minimal optimal solutions
to PCPSP-C and U-PIT, respectively. Then, POPT ⊆ PU-PIT.

Theorem 1 allows us to preprocess as follows when
G ≥ 0 and g ≥ 0. For each c ∈ #, compute p̄c, and solve
U-PIT, as described in (12)–(14). We can eliminate all
variables associated with clusters c /∈ PU-PIT from the
problem, as we know that there exists an optimal

solution to PCPSP-C which does not use them. Note
that the proof of Theorem 1 holds for both integrality
conditions (10) and (11). Because of this, PU-PIT is typ-
ically referred to as the ultimate pit limit of PCPSP-C.

4.2. Dominated Triplet Elimination Preprocessing
In nearly all strategic mine planning problems, most
blocks are typically “waste” blocks, that is, blocks
whose grade is so low that the profit of selling the
recovered metal does not cover the processing costs.
In most, though not all, problems, the option of
sending such blocks to the processor can be removed
from the model (by eliminating a destination of these
blocks), thus making the problem smaller. Below we
present a new, yet simple, preprocessing algorithm
that can be used to detect and eliminate destinations
which are never used in an optimal solution for cases
such as these.
For each triplet (b, d, t) ∈ @ ×$ ×7, let Gb,d,t be the

column of matrix G corresponding to variable yb,d,t.
We say that triplet (b, d1, t) dominates triplet (b, d2, t) if
Gb,d1,t ≤ Gb,d2,t (componentwise) and pb,d1,t ≥ pb,d2,t. In-
tuitively, (b, d1, t) dominates (b, d2, t) if the proportion
of block b sent to destination d1 in time t consumes the
same or fewer resources and provides at least the
same value as sending b to d2 in t. If this is the case,
then there is no need to actually define variable yb,d2,t,
as we may assume that there exists an optimal so-
lution such that yb,d2,t � 0.

4.3. Aggregation Preprocessing
In many instances of PCPSP-C, blocks in close prox-
imity to each other are identical. In such cases, it is
possible to group these blocks to reduce the number
of variables. We describe this new preprocessing
idea below.
Consider an instance of PCPSP-C and two blocks

b1, b2 within the same cluster such that, for some
λ ≥ 0, the following holds:

pb1,d � λpb2,d ∀d ∈ $, (15)
Gb1,d,t � λGb2,d,t ∀d ∈ $, t ∈ 7. (16)

In such a case, we can aggregate the two blocks
into one block b̄ with Gb̄,d,t � Gb1,d,t + Gb2,d,t and pb̄,d,t �
pb1,d,t + pb2,d,t. The validity of this preprocessing comes
from the fact that, given any feasible solution (x∗, y∗) to
the PCPSP-C satisfying (15) and (16), there exists
another solution (x, y) to the new aggregated problem
with the same objective value as (x∗, y∗). We can take
yb̄,d,t � λ

1+λ y
∗
b1,d,t

+ 1
1+λ y

∗
b2,d,t

for each d ∈ $, t ∈ 7, take
yb,d,t � y∗b,d,t for each b ∈ @ \ {b1, b2}, d ∈ $, t ∈ 7, and
take x � x∗. We can observe that pb̄,d,tyb̄,d � pb1,d,tyb1,d +
pb2,d,tyb2,d and Gb̄,d,tyb̄,d,t�Gb1,d,tyb1,d,t+Gb2,d,tyb2,d,t for each
d ∈ $, t ∈ 7.
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Note that this scheme is not affected by precedence
relationships given that only blocks within the same
cluster are aggregated and precedences in PCPSP-C
are only defined between clusters.

5. Cutting Planes
Bienstock and Zuckerberg (2010) claim that Formu-
lation (1)–(7) of PCPSP-C empirically presents low
integrality gaps. In Section 8, computational experi-
ments show that this is largely true for OPPDP.
However, we do not observe the same behavior in
OPPSP. To obtain low integrality gaps, we require
problem-specific cutting planes. In this section, we
first extend clique and early start inequalities from the
context of C-PIT to PCPCP-C. The first family of cuts
that we obtain ignores the destination of each block,
and we refer to them as extraction cuts. We also derive
two new classes of cuts which exploit the problem
structure resulting from block destination selectivity.
We call these production cuts.

In what follows, we use a new set of variables
describing the accumulated value of x variables:

wc,t �
∑t
t′�1

xc,t′ ∀d ∈ $, t ∈ 7. (17)

The value of wc,t in a feasible solution is the fraction of
cluster c extracted in time period t or earlier. Observe
that the precedence constraints (4) and mining ca-
pacity constraints (8) on the x variables imply that

wc,t ≤ wc,t+1 , ∀c ∈ #, ∀t ∈ 1, . . . ,T − 1, (18)
wc,t ≤ wc′,t , ∀ c, c′( ) ∈ !, t ∈ 7, (19)∑
c∈#

qcwc,t ≤
∑t
t′�1

Ut′ , ∀t ∈ 7, (20)

where qc � ∑
b∈c qb is the total weight of the cluster. The

full integrality conditions (10) and partial integrality
conditions (11) translate, respectively, as follows to
the w variables:

wc,t ∈ 0, 1{ } , ∀c ∈ #, ∀t ∈ 7, (21)
wc,t > 0 implies wc′,t � 1, ∀ c, c′( ) ∈ !, ∀t ∈ 7. (22)
All cuts are presented using the wc,t variables for
simplicity; nonetheless, it is evident that they can be
expressed using only variables xc,t. Thus, slightly
abusing notation,we discuss these valid inequalities for
PCPSP-C using variables wc,t.

For the reader’s sake, let us recall relevant defini-
tions and assumptions.We assume# to be such that≺
defines a partial order, and therefore, ! defines a
DAG. For each cluster c ∈ #, we define the closure of c
as cl(c) � {c} ∪ {c′ ∈ # : c′ ≺ c} and the reverse closure of

c as rcl(c) � {c} ∪ {c′ ∈ # : c ≺ c′}. For a block b ∈ @, we
denote by c(b) the unique cluster containing it. Ad-
ditionally, for a set of clusters C ⊆ #, we denote by
b(C) :� {b ∈ @ : b ∈ c, c ∈ C} the set of blocks on C.
Given S ⊆ # and a vector q ∈ R@, we define q(S) �∑

c∈S qc � ∑
c∈S

∑
b∈c qb.

5.1. Extraction Cuts
We next describe a class of cuts which exploits ex-
traction capacity limits (8). Since (18) and (19) are
precedence constraints and (20) is a knapsack con-
straint (i.e., nonnegative coefficients and a positive
right-hand side), (18)–(20) is a precedence-constrained
knapsack relaxation of PCPSP-C.
For a discussion of cuts derived from the precedence-

constrained knapsack problem, in addition to separa-
tion techniques, see Bley et al. (2010) and Espinoza
et al. (2015). The precedence-constrained knapsack
cuts that we analyze differ from those treated tradi-
tionally in academic literature in two aspects. First,
the time indexing of the variables gives these re-
laxations a nested structure that can be exploited.
Second, we not only consider the full integrality
constraint (21), but also the partial integrality con-
straint (22).
We now move on to describing three families of

extraction cuts: early start cuts, diamond cuts, and
clique and lifted clique cuts.

5.1.1. Early Start Cuts. As noted by Gaupp (2008),
Lambert et al. (2014), and others, one can use early
start cuts to eliminate a number of variables from
PCPSP. We extended this preprocessing technique to
the more general PCPSP-C, including the case of
partial integrality condition (11). This can reduce the
size of the problem, possibly speeding up computa-
tions, and it can also improve the LP relaxation bound
of the problem.

Theorem 2. Let t ∈ 7 and Qt � ∑t
t′�1 Ut′ , and consider a

cluster c ∈ # such that q(cl(c)) > Qt. Then,
• the equality wc,t � 0 is valid for the PCPSP-F; and
• whenever qc > 0, the inequality wc,t ≤ (Qt−q(cl(c)\{c}))+

qc
is

valid for PCPSP-P.

Proof. The result for the PCPSP-F is known; thus, we
only prove this result for the PCPSP-P. We use in-
tegrality condition (22) obtained from (11). If wc,t > 0,
then wc′,t � 1 for all c′ ∈ cl(c) \ {c}. From this and in-
equality (20), it follows that qcwc,t ≤ Qt − q(cl(c) \ {c}).
If Qt ≤ q(cl(c) \ {c}), we obtain a contradiction with
wc,t > 0. Hence,Qt ≤ q(cl(c) \ {c}) implieswc,t � 0. From
these conditions, we conclude that wc,t ≤ (Qt−q(cl(c)\{c}))+

qc
is valid for PCPSP-P, where (Qt − q(cl(c) \ {c}))+ �
max{0, (Qt − q(cl(c) \ {c}))}. □

Rivera Letelier et al.: Production Scheduling for Strategic Open Pit Mine Planning
8 Operations Research, Articles in Advance, pp. 1–20, © 2020 INFORMS



Note that early start cuts can also be used as a pre-
processing technique, eliminating variables in PCPSP-F
or PCPSP-P when the cut sets them to 0.

5.1.2. Diamond Cuts. The following inequalities are
similar to those used by Zhu et al. (2006) in the context
of multimode resource-constrained project problems.
These cuts use the set cl(c2) ∩ rcl(c1) for c1, c2 ∈ # such
that c1 ≺ c2, which intuitively can be pictured as the
intersection of two cones facing each other.

Theorem 3. Let t1, t2 ∈ 7, t1 ≤ t2, and Qt1,t2 � ∑t2
t′�t1 Ut′ ,

and consider clusters c1, c2 ∈ # such that c1 ≺ c2. Then,
• whenever q(cl(c2) ∩ rcl(c1)) > Qt1,t2 , the inequality

wc2,t2 ≤ wc1,t1 is valid for PCPSP-F; and
• whenever q(cl(c2) ∩ rcl(c1) \ {c1, c2}) > Qt1,t2 , the in-

equality wc2,t2 ≤ wc1,t1 is valid for the PCPSP-P.

Proof. First, consider full integrality condition (21)
obtained from (10), and as a contradiction, suppose that
wc2,t2 > wc1,t1 . This implies that wc2,t2 � 1 and wc1,t1 � 0.
Consequently, all clusters in cl(c2) ∩ rcl(c1) are extracted
in time periods t1 through t2. Nevertheless, this is
impossible, as q(cl(c2) ∩ rcl(c1)) > Qt1,t2 .

Now, assume partial integrality condition (22) ob-
tained from (11) and that wc2,t2 > wc1,t1 . Consequently,
wc1,t1 < 1 and wc2,t2 > 0. These conditions imply that
every cluster in cl(c2) ∩ rcl(c1) \ {c1, c2} is fully extracted
in time periods t1 through t2. Nevertheless, this is
impossible, as q(cl(c2) ∩ rcl(c1) \ {c1, c2}) > Qt1,t2 . □

5.1.3. Clique and Lifted Clique Cuts. Clique and lifted
clique inequalities have been studied for precedence-
constrained knapsack problems since Boyd (1993).
We now introduce a natural generalization for the
context of the PCPSP-Cwhich can be usedwith partial
integrality.

Consider two clusters c1, c2 ∈ # such that neither
c1 ≺ c2 nor c2 ≺ c1. We define the incompatibility of c1
and c2 as follows:

• We say that c1 and c2 are f-incompatible in time t if
q(cl({c1, c2})) > Qt.

• We say that c1 and c2 are p-incompatible in time t if
q(cl({c1, c2}) \ {c1, c2}) > Qt.

Intuitively, incompatible clusters are such that neither
can be extracted before a certain time period. Using this
information, we obtain the following result.

Theorem 4. Let {c1, c2, . . . , ck} be a set of clusters, and
consider the following inequality:∑k

i�1
wci,t ≤ 1. (23)

Then,
• if {c1, c2, . . . , ck} are pairwise f-incompatible, then

inequality (23) is valid for PCPSP-F; and

• if {c1, c2, . . . , ck} are pairwise p-incompatible, then
inequality (23) is valid for PCPSP-P.
In addition, if a cluster c ∈ # is such that c ≺ ci for
i � 1, . . . , k, then constraint

∑k
i�1 wci ,t ≤ wc,t is also valid for

PCPSP-F (PCPSP-P) if {c1, c2, . . . , ck} are pairwise f-in-
compatible (p-incompatible).

Proof. To prove that (23) is valid, suppose
∑k

i�1 wci ,t > 1.
This assumption implies that there exist i1, i2 ∈ 1, . . . , k
such that wi1,t > 0 and wi2,t > 0.
Assume that {c1,c2, . . . ,ck} are pairwise f-incompatible.

Using integrality condition (21), we would have that
wi1,t � wi2,t � 1. This would imply that all clusters in
cl({ci1 , ci2}) were extracted at time t or earlier, which
would, in turn, contradict q(cl({ci1 , ci2})) > Qt. This
proves the result for the PCPSP-F.
Now, assume that {c1, c2, . . . , ck} are pairwise p-in-

compatible. Using integrality condition (22), wi1,t > 0
andwi2,t > 0 would imply that all clusters in cl({ci1 , ci2})\
{ci1 , ci2}were extracted at time t or earlier, which would,
in turn, contradict q(cl({ci1 , ci2}) \ {ci1 , ci2}) > Qt. From
here, we conclude the result for PCPSP-P. □

5.2. Production Cuts
In this subsection, we describe new classes of cuts for
the PCPSP-C, which we term production cuts, because
they exploit the capacity limits of each destina-
tion (9) that are typically used to impose limits on
production.

5.2.1. Production Cuts in a Simplified Case. For the
reader’s sake, in this subsection, we present the pro-
duction cuts in a simplified version of the problem,
which considers two destinations: blocks are either
processed (P) or wasted (W). We assume no clusters
(or, equivalently, single-block clusters) and no time
index (i.e., T � 1). Consider an DAG G � (@,!), a
vector of positive coefficients q ∈ R@+ , and a capacity
U > 0. We define the mode-knapsack mixed-integer set
(MK) as follows. A vector (x, yP, yW) ∈ R@ × R@ × R@

belongs to the set MK if and only if the following
conditions are met:∑

b∈@
qbyPb ≤ U, (24)

yPb + yWb � xb ∀b ∈ @, (25)
xb ≤ 1 ∀b ∈ @, (26)
xb > 0 �⇒ xb′ � 1 ∀ b, b′( ) ∈ !, (27)
yPb , y

W
b ≥ 0 ∀b ∈ @. (28)

We can derive the following cuts for MK.

Simplified Variable-Right-Hand Side (VRHS) Cuts.
This family of cuts combines the precedence rela-
tionships in the extraction of blocks and the production
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limit (24). In other words, they ensure that if a solution
sends a large number of blocks to be processed, then
all predecessors of those blocks must be fully ex-
tracted as well.

Theorem 5. Let b ∈ @ be such that qb ≤ U. Then, the
following inequality is valid for MK:∑

b′∈rcl b( )
qb′yPb′ ≤ Uxb.

Proof. If xb � 1, then the inequality holds because of (24).
If xb < 1, then xb′ � 0 for each b′ ∈ rcl(b) \ {b}, and then,
the inequality holds because yPb ≤ xb and qb ≤ U. □

Note that although we assume that qb ≤ U, we can
easily relax this assumption by changing the co-
efficient of the variable on the right-hand side.

Simplified Hourglass Cuts. Contrary to the VRHS
cuts, the hourglass cuts derive valid inequalities in-
volvingW, thewaste destination in our interpretation.
In other words, we exploit the fact that, for a block to
be extracted, it is necessary to send blocks comprising
an aggregate minimum weight to destination W.

Theorem 6. Let b ∈ @, and let S ⊆ cl(b) \ {b} be such that
q(S) ≥ U. Then, the following inequality is valid for MK:

q S( ) + qb −U
( )

xb ≤
∑

b′∈S∪ b{ }
qb′yWb′ .

Proof. The inequality is clearly valid when xb � 0.
Suppose that xb > 0; then, for each b′ ∈ S, we have
xb′ � yPb′ + yWb′ � 1. Hence,

∑
b′∈S∪ b{ }

qb′yPb′ ≤ U �⇒ U −∑
b′∈S

qb′yPb′ ≥ qbyPb

�⇒ U −∑
b′∈S

qb′ 1 − yWb′
( ) ≥ qbyPb

�⇒ ∑
b′∈S

qb′yWb′ ≥ qbyPb + q S( ) −U

�⇒ ∑
b′∈S∪ b{ }

qb′yWb′ ≥ qb yPb + yWb
( )

+ q S( ) −U

�⇒ ∑
b′∈S∪ b{ }

qb′yWb′ ≥ qbxb + q S( ) −U

≥ qb + q S( ) −U
( )

xb.

In the above, the last inequality holds because q(S) ≥
U and xb ≤ 1. Therefore, whenever xb > 0, we have

q S( ) + qb −U
( )

xb ≤
∑

b′∈S∪ b{ }
qb′yWb′ .

These cuts can be lifted using the extraction variables
for the nodes in rcl(b) to obtain the following valid
inequality for MK:

q S( ) + qb −U
( )

xb +
∑

b′∈rcl b( )\ b{ }
qb′yPb′ ≤

∑
b′∈S∪ b{ }

qb′yWb′ .

The proof of the validity of this inequality for MK is
identical to the previous one. Because this last ex-
pression uses variables for blocks in cl(b) and in rcl(b),
we call this family hourglass cuts. □

Now, we introduce both families in the general
PCPSP-C context. The intuition is the same; however,
additional analysis is necessary to include clusters,
arbitrary numbers of destinations, and multiple time
periods.

5.2.2. VRHS Cuts. First, we observe that the following
conditions are valid for PCPSP-C for both full and
partial integrality conditions:

wc,t < 1 ⇒ yb,d,t � 0,
∀c ∈ #,∀b ∈ b ∈ @ : c b( ) ∈ rcl c( ) \ c{ }{ },

∀d ∈ $, ∀t ∈ 7, (29)
yb,d,t ≤ wc,t, ∀c ∈ #, ∀b ∈ c,

∀d ∈ $, ∀t ∈ 7, (30)∑
b∈@

qbyb,d,t ≤ Ud
t , ∀d ∈ $, ∀t ∈ 7, (31)

with wc,t defined in (17). These can be used to derive a
new family of valid inequalities, generalizing the cuts
discussed above.

Theorem 7. Consider a destination d ∈ $, a time period
t ∈ 7, and a family of clusters c1, c2, . . . , cn ∈ # such that the
following conditions hold:
1. c1 ≺ c2 ≺ . . . ≺ cn,
2. q(rcl(c1) \ rcl(cn)) < Ud

t ,
3. q(rcl(c1)) > Ud

t .

Additionally, define Δk � rcl(ck) \ rcl(ck+1) and δk � q(Δk)
for k � 1, . . . , n − 1, and Δn � rcl(cn) and δn � Ud

t −
q(rcl(c1) \ rcl(cn)). Consider the inequality∑n−1

k�1

∑
c∈Δk

∑
b∈c

qbyb,d,t

( )
+∑

b∈cn
αbqbyb,d,t

+ ∑
c∈rcl cn( )\ cn{ }

∑
b∈c

qbyb,d,t ≤
∑n
k�1

δkwck ,t (32)

for some constants 0 ≤ αb ≤ 1, b ∈ cn. Then, (32) is valid
for PCPSP-F. Additionally, if constants αb satisfy∑

b∈cn
αbqb ≤ Ud

t − q rcl c1( ) \ rcl cn( )( ), (33)

then (32) is valid for PCPSP-P.
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Proof. The proof is divided in two cases: (i) the case in
which ∀k ∈ {1, . . . , n} wck ,t � 1, and (ii) the case inwhich
∃k ∈ {1, . . . ,n} wck ,t < 1.

Case 1: wck ,t � 1 for k� 1, . . . ,n. Note that {Δ1, . . . ,Δn−1}
is a partition of rcl(c1) \ rcl(cn). Thus,∑n−1

k�1 δk � q(rcl(c1)\
rcl(cn)), which implies

∑n
k�1 δk � Ud

t . Then

∑n−1
k�1

∑
c∈Δk

∑
b∈c

qbyb,d,t

( )
+∑

b∈cn
αbqbyb,d,t

+ ∑
c∈rcl cn( )\ cn{ }

∑
b∈c

qbyb,d,t

≤ ∑n−1
k�1

∑
c∈Δk

∑
b∈c

qbyb,d,t

( )
+ ∑

b∈rcl cn( )
qbyb,d,t

≤ ∑
b∈@

qbyb,d,t ≤ Ud
t �

∑n
k�1

δk �
∑n
k�1

δkwck ,t,

where the first inequality comes from the fact that
αb ≤ 1, and the second inequality ensues, as each
block is being counted at most once on the left-hand
side. Thus, in this case, (32) is valid.

Case 2: Suppose now that ∃k such that wck ,t < 1, and
let ko � min{k ∈ 1, . . . , n : wck ,t < 1}. Observe that wck ,t �
yb,d,t � 0 for k > ko and b ∈ b(Δk). Additionally, since
this case implies wcn,t < 1, for each c ∈ rcl(cn) \ {cn}, we
have wc,t � 0. This makes inequality (32) equivalent to

∑n−1
k�1

∑
c∈Δk

∑
b∈c

qbyb,d,t

( )
+∑

b∈cn
αbqbyb,d,t ≤

∑n
k�1

δkwck ,t. (34)

We now analyze two subcases regarding ko.
• If ko < n, since cn ∈ Δn and rcl(cn) \ {cn} ⊆ Δn, the

second term on the left-hand side of inequality (34) is
0. Moreover, this inequality simplifies to

∑ko
k�1

∑
c∈Δk

∑
b∈c

qbyb,d,t

( )
≤ ∑ko

k�1
δkwck ,t.

This inequality is valid since

∑
c∈Δk

∑
b∈c

qbyb,d,t ≤
∑
c∈Δk

∑
b∈c

qbwc,t ≤
∑
c∈Δk

∑
b∈c

qb

( )
wck ,t

� δkwck ,t ∀k ∈ 1, . . . , n − 1{ }. (35)
• If ko � n and we use full integrality conditions,

then wcn,t � yb,d,t � 0 for all b ∈ cn. Thus, the validity
of (34) for the PCPSP-F follows from (35).

On the other hand, if ko � n and we use the partial
integrality condition, from (29) and (33), we obtain

∑
b∈cn

αbqbyb,d,t ≤
∑
b∈cn

αbqb

( )
wcn,t

≤ Ud
t − q rcl c1( ) \ rcl cn( )( )( )

wcn,t

� δnwcn,t.

(36)

Thus, the validity of (34) for the PCPSP-P derives
from (35) and (36). □

5.2.3. The Hourglass Cuts. We now generalize the
hourglass cuts for the PCPSP-C. These are a variant of
the VRHS inequalities described above.
In its simplified form, each hourglass cut considers

a cluster c̄, a set of blocks S contained in b(cl(c̄)), and
the set of blocks in b(rcl(c̄)), as the name of the in-
equality suggests.

Theorem 8. Let 1 ≤ t1 ≤ t ≤ T, let c̄ ∈ #, and let S ⊆
b(cl(c̄) \ {c̄}) be such that

q S( ) ≥ ∑t
s�t1

Ud
s .

Let R � rcl(c̄) \ {c̄}. Then, the inequality

q S ∪ c̄{ }( ) −∑t
s�t1

Ud
s

( )
wc̄,t +

∑
b∈b R( )

qb
∑t
s�t1

yb,d,s

≤ ∑
b∈S∪ c̄{ }

qb wc b( ),t −
∑t
s�t1

yb,d,s

( )
(37)

is valid for PCPSP-C.

Proof. If wc̄,t � 0, then the left-hand side is equal to 0,
and the inequality holds true. Henceforth, assume
wc̄,t > 0. Then, for each b ∈ S, wc(b),t � 1. We know that

∑
b∈S

qbyb,d,s +
∑
b∈c̄

qbyb,d,s +
∑
b∈b R( )

qbyb,d,s ≤ Ud
s ∀s ≤ t.

Combining these inequalities, we obtain

∑
b∈S

qb
∑t
s�t1

yb,d,s+
∑
b∈c̄

qb
∑t
s�t1

yb,d,s+
∑
b∈b R( )

qb
∑t
s�t1

yb,d,s ≤
∑t
s�t1

Ud
s .

Moving the leftmost term to the right-hand side and
adding

∑
b∈S qbwc(b),t on both sides yields

∑
b∈S

qb wc b( ),t⏟⏞⏞⏟
1

+∑
b∈c̄

qb
∑t
s�t1

yb,d,s +
∑
b∈b R( )

qb
∑t
s�t1

yb,d,s

≤ ∑t
s�t1

Ud
s +

∑
b∈S

qbwc b( ),t −
∑
b∈S

qb
∑t
s�t1

yb,d,s

�⇒ q S( ) −∑t
s�t1

Ud
s +

∑
b∈c̄

qb
∑t
s�t1

yb,d,s⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟∑
b∈c̄

qb wc̄,t−wc̄,t+
∑t
s�t1

yb,d,s

( )
+ ∑

b∈b R( )
qb

×∑t
s�t1

yb,d,s ≤
∑
b∈S

qb wc b( ),t −
∑t
s�t1

yb,d,s

( )
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�⇒ q S( ) −∑t
s�t1

Ud
s +

∑
b∈c̄

qbwc̄,t⏟̅̅⏞⏞̅̅⏟
q c̄( )wc̄,t

+ ∑
b∈b R( )

qb
∑t
s�t1

yb,d,s

≤ ∑
b∈S∪ c̄{ }

qb wc b( ),t −
∑t
s�t1

yb,d,s

( )

�⇒ q S( ) −∑t
s�t1

Ud
s + q c̄( )

( )
wc̄,t +

∑
b∈b R( )

qb
∑t
s�t1

yb,d,s

≤ ∑
b∈S∪ c̄{ }

qb wc b( ),t −
∑t
s�t1

yb,d,s

( )
.

This proves the validity of (37). □

Given the flexibility in the choice of the set S above,
we are also interested in finding the best possible S. It
turns out that there is a simple expression for the set S
with maximum violation. Specifically, given a solu-
tion (w∗, y∗) of the relaxation of the PCPSP-C, a cluster
c̄ ∈ #, and time periods 1 ≤ t1 ≤ t ≤ T, the set S∗which
maximizes the violation in (37) is

S∗ � b ∈ @ : c b( ) ≺ c̄, w∗̄c,t > w∗c b( ),t −
∑t
s�t1

y∗b,d,s
{ }

. (38)

If a block b̄ such that c(b̄)≺ c̄ satisfies w∗̄c,t > w∗c(b),t −∑t
s�t1 y

∗
b,d,s and it is not in S∗, then adding it to S∗would

increase the violation of the inequality. If a block b̄ ∈
S∗ is such that w∗̄c,t < w∗c(b),t −

∑t
s�t1 y

∗
b,d,s, then removing

it from S∗would decrease it. Expression (38) allows us
to quickly compute the most-violated hourglass cut,
thus efficiently finding a deep cut in this family.

6. Heuristics
To quickly compute good feasible solutions to instances
of PCPSP-C (and, consequently, strong lower bounds),
we rely on a combination of heuristic techniques and a
local search method. The first technique is a general-
izationof theTopoSort heuristic, originallydescribedby
Chicoisne et al. (2012) for C-PIT, to PCPSP-C. That is,
this generalization considers arbitrary clusters and
both full and partial integrality. The heuristic requires
all the coefficients in constraint matrix G to be non-
negative; thus, it is well suited for all instances of
the OPPDP and for instances of OPPSP with G ≥ 0.
The second technique that we consider is based on
converting an instance of PCPSP-C to an instance of
PCPSP by fixing the destination of each block before
the optimization. This technique potentially allows
us to use the many different algorithms that have
been proposed for C-PIT, although it is more general
since it does not require G to be nonnegative. Further-
more, if the number of clusters that define the prob-
lem is not too large, as is often the case, one can solve
the resulting PCPSP directly with a mixed-integer

programming solver. This makes the technique well
suited for the OPPSP but not very effective for the
OPPDP. We call this second technique the 1-DEST
heuristic. Finally, given an integer-feasible solution of
PCPSP-C, it is possible to perform a simple local
search procedure to improve the destination assign-
ment of the blocks. One can apply this to any integer-
feasible solution of PCPSP-C simply by solving an
LP problem, which we call the optimize-destinations
heuristic. We now describe these in more detail.

6.1. The Generalized TopoSort Heuristic [TopoSort]
The generalized TopoSort heuristic, presented in Al-
gorithm 1, is a modified version of the expected-time
TopoSort heuristic of Chicoisne et al. (2012) that ex-
pands the functionality of the algorithm from in-
stances of the C-PIT to instances of the PCPSP-C. It
takes as input a solution (x∗, y∗) obtained by solving
the LP-PCPSP-C and outputs a feasible solution (x̄, ȳ)
of the PCPSP-P satisfying the partial integrality con-
straint, as defined in (11). The heuristic assumes that
matrix G, appearing in constraints (23), is such that
G ≥ 0 (i.e., all its components are nonnegative). It is
straightforward to modify this heuristic such that its
output satisfies full integrality (10).

Algorithm 1 (The TopoSort Heuristic)
Input: An instance of the PCPSP-P, as defined in

(1)–(7) with integrality constraints (11), such that G≥ 0
and g ≥ 0. A solution (x∗, y∗) of the LP relaxation.
Output: A solution (x̄, ȳ) of a PCPSP-P instance.
1 Let 7∗ � 7 ∪ {T + 1}.
2 For each c ∈ #, define:

δ(c) � |{c′ ∈ # : (c, c′) ∈ !}|,
Sc � {c′ ∈ # : (c′, c) ∈ !},

x∗c,T+1 � 1 −∑
t∈7

x∗c,t,
es(c) � min{t ∈ 7∗ : x∗c,t > 0},

E(c) � ∑
t∈7∗

tx∗c,t.

3 (x̄, ȳ) ← (0, 0).
4 while # �� ∅ do
5 Choose c ∈ # that solves

min{E(c) : δ(c) � 0, es(c) ≤ T}.
6 for b ∈ c do
7 d(b) ← argmax{∑t∈7 y∗b,d,t : d ∈ $}.
8 t ← es(c).
9 w ← 0.

10 while w < 1 and t ≤ T do
11 ᾱ ← max{α : Gȳ ≤ g, w + α ≤ 1,

ȳb,d(b),t � α, ∀b ∈ c}.
12 ȳb,d(b),t ← ᾱ for all b ∈ c.
13 x̄c,t ← ᾱ.
14 w ← (w + ᾱ).
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15 t ← (t + 1).
16 for a ∈ Sc do
17 δ(a) ← δ(a) − 1.
18 es(a) ← max{es(a), t}.
19 # ← # \ {c}.

Given aDAG, a topological ordering is such that if a
node u comes before a node v, then there cannot exist
an arc going from u to v. It is well known that every
DAG admits a topological ordering and that com-
puting it can be done in linear time (see Cook et al.
1998). In terms of the open pit production scheduling
problem, a topological ordering corresponds to an
extractable ordering of the blocks. That is, the position
of every block b in the ordering is such that all its
predecessors appear before it.

The TopoSort heuristic presented in Chicoisne et al.
(2012) works by first sorting all blocks in topological
order. Following this order, each block is scheduled as
early as possible, that is, in the first time period with
sufficient resources and no earlier than its prede-
cessors. Once a block is scheduled, the available re-
sources are updated, and the algorithm continues by
scheduling the next block. Because many topological
orderings are available, the heuristic uses the optimal
solution of the LP relaxation to guide the sorting
process. See Chicoisne et al. (2012) for details.

The generalized TopoSort algorithm that we present
in Algorithm 1 exhibits several important differences
from the TopoSort heuristic described by Chicoisne
et al. (2012). First, it schedules clusters rather than
blocks. Second, it can handle partial integrality con-
dition (11). Third, it forces clusters to be extracted no
earlier than the first time period in which the corre-
sponding variables in the LP relaxation have nonzero
values. This last modification, implemented in Step 8
of Algorithm 1, prevents negative-valued extractions
from occurring too early in the schedule. Fourth, we
break ties with the coefficients in the objective function.

6.2. The 1-DEST Heuristic
This heuristic proceeds in three steps. First, it uses the
optimal solution (x∗, y∗) of LP-PCPSP-C to assign a
fixed destination to each block for each period. Sec-
ond, it constructs a small instance of PCPSP with a
single destination (and no clusters). This is done by
substituting out all of the y variables and obtaining a
problem only in terms of the x variables. Third, the
resulting problem is solved directly by using amixed-
integer programming solver.

Specifically, for each b ∈ @, d ∈ $, let us define

ȳb,d �
∑

t∈7 y∗b,d,t∑
d′∈$

∑
t∈7 y∗b,d′,t

.

Given these values, we impose the following condi-
tion for each c ∈ #, b ∈ c, d ∈ $, and t ∈ 7:

yb,d,t � xc,t · ȳb,d. (37)
Substitute Equations (37) in constraints (3)–(6) of the
PCPSP-C formulation to obtain

max
∑
c∈#

∑
t∈7

p̄c,txc,t

s.t.
∑
t∈7

xc,t ≤ 1 ∀c ∈ #,

∑t
t′�1

xc,t′ ≤
∑t
t′�1

xc′,t′ ∀ c, c′( ) ∈ !, t ∈ 7,

Ḡx ≤ g
xc,t ≥ 0 ∀c ∈ #, t ∈ 7,

xc,t satisfies an integrality condition
∀c ∈ #, t ∈ 7,

where p̄ and Ḡ are naturally defined from the substitution.
Solve this problem to optimality using a mixed-

integer programming solver, and use (37) to deter-
mine the value of the associated y variables. Depend-
ing on the integrality conditions used in the last
optimization problem, we construct a solution to
either PCPSP-F or PCPSP-P.

6.3. The Optimize-Destinations Heuristic
Consider a feasible mixed-integer solution (x, y) of
PCPSP-C. A simple method to obtain an improved
solution (x, y′) is to fix the x variables and reoptimize
the y variables with an LP solver (e.g., with the BZ
algorithm proposed by Bienstock and Zuckerberg
(2009, 2010)). This is a natural process after running
the generalized TopoSort or 1-DEST heuristics, which
can only improve the solution.

7. Branch-and-Bound
We now introduce a simple branch-and-bound al-
gorithm to solve PCPSP-C to optimality. In our de-
scription of the algorithm, we assume that we are
interested in computing a solution which satisfies
the partial integrality constraint (11). Imposing in-
tegrality constraint (10) instead is analogous. This
algorithm does not make any assumptions about the
matrix G appearing in the constraints (5). For back-
ground about the branch-and-bound algorithm, see
Nemhauser and Wolsey (1989). The main character-
istics of our branch-and-bound algorithm are the
following:
• The nodes of the branch-and-bound tree can be

explored in a depth-first search or a best-bound-first
search. In our computational runs, we used the best-
bound-first-search rule. We use strong branching at
every node of the tree to select variables.
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• The LP at each node of the tree is solved with the
BZ algorithm, using the features described byMuñoz
et al. (2018).

• When using the partial integrality condition (11),
a solution x∗ is considered “fractional” if there exist an
arc (c1, c2) ∈ ! and a time period t ∈ 7 such that∑t

t′�1
x∗c1,t′ > 0 and

∑t
t′�1

x∗c2,t′ < 1.

In this case, (c1, c2) ∈ ! and t ∈ 7 define a possible
branching point. The two branches to consider for this
point are∑t

t′�1
xc1,t′ � 0 the down-branch( ), and

∑t
t′�1

xc2,t′ � 1 the up-branch
( )

. (40)

If, after branching on (c1, c2) and t, we find that one of
the branches is pruned, the parent node can be
strengthened as follows.

—If the down-branch is pruned, all integral solu-
tions at the parent node must satisfy

∑t
t′�1 xc1,t′ > 0.

This, in turn, implies that all integral solutions at the
parent node must satisfy the following constraint,
which can be added to the node:∑t

t′�1
xc,t′ � 1 for all c such that c1, c

( ) ∈ !. (41)

—If the up-branch is pruned, integral solutions at
the parent node must satisfy

∑t
t′�1 xc2,t′ < 1. This, in

turn, implies that all integral solutions at the parent
node must satisfy the following constraint, which can
be added to the node:∑t

t′�1
xc,t′ � 0 for all c such that c, c2

( ) ∈ !. (42)

• The solver only adds cutting planes to the root
node.

8. Computational Study
The primary goal of our computational study is to
determine if the proposed methodology can be used
to solve real problem instances of OPPDP andOPPSP.
The secondary goal of our study is to determine the
contribution of each feature to the overall effective-
ness of the methodology. To conduct our study, we
implemented the methodology described in this pa-
per, including all the features covered in Sections 4–7,
and collected ten mine planning instances which
could be used to solve instances of both OPPDP
and OPPSP.
Table 1 summarizes the numerical characteristics of

our test instances. These instances all correspond to
real mines, with the exception of marvin. Moreover,
four of these instances (kd, marvin, mclaughlin, and
mclaughlin_limit) are publicly available in theMineLib
repository (see Espinoza et al. 2012). The remaining
instances were provided by industry partners, whose
names we have changed for confidentiality reasons.
Using each of these datasets, we created one in-

stance of OPPDP and two instances of OPPSP. We
refer to the latter two as the OPPSP base instance and
the OPPSP extended instance.
To build each OPPSP base instance, we computed

clusters for the corresponding problems as follows.
A mining engineer used the GEOVIA Whittle (Das-
sault Systèmes 2019) strategic mine planning soft-
ware to compute four phases for each instance using
the “Automatic Pushback Generator” feature (Milawa
Net Present Value (NPV) algorithm). The clusters
used for our models consist of the bench-phases ob-
tained by using these phases. Each instance has be-
tween 50 and 300 clusters. To build each OPPSP ex-
tended instance, each OPPSP base instance was
modified in one of four ways:
• For instances calbuco, kd, and palomo, the mining

engineer computed clusters using seven phases, rather
than four.

Table 1. Description of Instances Used for Computational Tests

Instance |$| |7| mcap

OPPDP OPPSP base OPPSP extended

|@| nvars |#| |@| nvars |#| |@| nvars

calbuco 3 21 n 5,016,971 316,069,173 324 200,241 8,416,926 548 200,241 12,615,183
chaiten 2 25 y 339,199 16,959,950 273 288,073 7,208,650 273 288,073 7,208,650
guallatari 3 21 y 1,672,198 105,348,474 272 57,527 2,421,846 272 57,527 2,421,846
kd 2 12 n 14,153 339,672 53 10,128 122,172 93 10,128 243,072
marvin 2 20 y 53,271 2,130,840 56 8,515 171,420 56 8,515 171,420
mclaughlin 2 20 n 2,140,342 85,613,680 173 180,749 3,618,440 173 180,749 3,618,440
mclaughlin_limit 2 15 n 112,687 3,380,610 166 110,768 1,664,010 166 110,768 1,664,010
palomo 2 40 y 772,800 61,824,000 74 190,319 7,615,720 123 190,319 15,225,520
ranokau 2 81 y 1,873,035 303,431,670 186 317,907 25,765,533 186 317,907 25,765,533
tronador 2 20 y 329,859 18,801,963 220 30,099 1,805,940 220 30,099 1,805,940

Notes. mcap indicates the presence of mining capacity constraints (8). All instances have destination capacity constraints (9), and nvars indicates
the number of variables in the problem before preprocessing.
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• For instances chaiten, marvin, and mclaughlin, we
added minimum processing constraints,∑

b∈@
qbyb,d,t ≥ Ldt ∀t ∈ 7,

where d ∈ $ is themill or the concentrator destination.
These constraints are fairly common and seek to
ensure a constant yearly production and usage of the
concentrator.

• For instances guallatari, mclaughlin_limit, and
ranokau, we imposedwhat is known as a flow-balance
constraint, that is, a constraint of the form∑

b∈@

∑
d∈$

qbyb,d,t+1 ≤ 1 + α( )∑
b∈@

∑
d∈$

qbyb,d,t

∀t ∈ 1, . . . ,T − 1{ }. (43)
These constraints are fairly common in industry since,
in practice, it is not feasible to radically change the
size of the workforce and fleet of trucks from one year
to another. For example, Dassault Whittle offers a
heuristic called Milawa balance which imposes this
condition. In our runs, we used α � 0.0, which pro-
duces solutions with characteristics similar to those
produced by the default Milawa balance algorithm.

• In the case of instance tronador, we imposed a
blending constraint. These constraints are typically
used to limit the weighted average of a given con-
taminant sent to a fixed destination d ∈ $. For each
b ∈ B, we let q′b represent the tons of prohibited ma-
terial in b, and since we wish to impose that the
weighted average grade of this material is less than βt
in each period t ∈ 7, we add the following constraint:∑

b∈@ q′byb,d,t∑
b∈@ qbyb,d,t

≤ βt ∀t ∈ 7 \ 1{ }.

By multiplying the denominator, this constraint be-
comes linear and can be added to the model. In the
specific case of tronador, the constraint is used to limit
the weighted average amount of arsenic sent to the
mill.
The constraints added to the OPPSP extended in-

stances made the OPPSP base instance solutions
infeasible. Moreover, with the exception of the “se-
ven phases” cases, the TopoSort and UPIT methods
cannot be used in any of the OPPSP extended
instances.
All our algorithms were implemented using the

C programming language, with CPLEX® 12.6 as the
optimization solver. The computer servers employed
for computations use Linux 2.6.32 on x86_64 archi-
tecture, with four eight-core Intel® Xeon® E5-2670
processors and 128 GB of RAM. Results analyze the
performance with different sets of activated features
and are given as normalized geometric means.

8.1. Effectiveness of the Methodology on Instances
of the OPPDP

We began by testing the effectiveness of our three
proposed preprocessing techniques: ultimate pit limit
preprocessing (UPIT), dominated triplet elimination
(DTE), and early start cuts (ES), as described in
Sections 4.1, 4.2, and 5.1, respectively. We ran the
preprocessing algorithm four times on each instance:
onewith all our preprocessing techniques (we call this
our default preprocessing methodology), and then
we preprocessed each instance by using our default
preprocessing with exactly one of the features dis-
abled. Table 2 describes the results of these experi-
ments. To facilitate comparisons, we present the
resulting number of variables as a percentage of the
original number of variables (originally given in Ta-
ble 1). As can be appreciated from the fifth column,
the effect of preprocessing can be significant. This is
illustrated by the calbuco instance, where only 3.19%
of the variables remained after preprocessing. How-
ever, in the other instances, the effect is only mod-
erate. By observing columns two through four, it is
noticeable that all three techniques (UPIT, DTE, and
ES) are effective. However, disabling UPIT has the

Table 3. Objective Values of OPPDP Instances as a
Percentage of TopoSort Objective Value

Instance LP relaxation Total time

calbuco 102.06 13m 5s
chaiten 100.33 26m 55s
guallatari 101.22 2m 16s
kd 100.87 2.8s
marvin 102.49 4.5s
mclaughlin 100.21 4m 55s
mclaughlin_limit 100.16 1m 36s
palomo 101.10 12m 12s
ranokau 102.22 9h 39m 13s
tronador 102.47 3m 13s
Geometric mean 101.31 —

Table 2. Percentage of Variables in OPPDP Instances
Remaining After Preprocessing

Instance

Default Default Default

Defaultw/o ES w/o DTE w/o UPIT

calbuco 3.19 3.95 68.46 3.19
chaiten 53.73 84.06 61.04 53.16
guallatari 2.35 3.43 43.46 2.32
kd 85.88 85.88 100.00 85.88
marvin 12.07 15.88 53.67 11.96
mclaughlin 6.24 8.44 52.22 6.24
mclaughlin_limit 77.76 98.30 78.62 77.76
palomo 7.46 12.39 46.51 7.31
ranokau 11.89 15.31 46.33 11.01
tronador 29.21 32.24 70.33 28.75
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most detrimental effect. After preprocessing these
instances, we solved the LP relaxation of the corre-
sponding PCPSP-C instance using the BZ algorithm,
as described inMuñoz et al. (2018). Then, we used the
TopoSort heuristic, as described in Section 6.1, to
compute integer-feasible solutions for each instance
and the optimize-destinations heuristic, as described
in Section 6.3, to improve them.

The results are presented in Table 3. To facilitate
comparisons, in the second column, we show the
objective function value of the LP relaxation as a
percentage of the solution obtained via the TopoSort
heuristic. The total time taken by the algorithm,

including the time to solve the LP relaxation, is
presented in column three. It should be further noted
that the time required for the TopoSort and optimize-
destination heuristics is negligible (less than one
second). In Table 3, we observe that, with the ex-
ception of the ranokau instance, it is possible to com-
pute very high-quality solutions to these problems in
just minutes. For example, consider the guallatari
instance. In just over two minutes (2 m 16 s), it is
possible to obtain an integer-feasible solution within
1.3% of optimality. The LP relaxation of ranokau is
difficult to solve owing to the number of time periods
it contains. However, the quality of the solution

Table 4. Percentage of Variables in OPPSP Instances Remaining After Preprocessing

Instance
Default
w/o ES

Default
w/o DTE

Default
w/o UPIT

Default
w/o AGG Default

calbuco 30.56 50.25 30.56 70.94 30.56
chaiten 23.21 24.09 15.96 17.96 15.96
guallatari 51.09 80.58 41.61 42.20 41.61
kd 42.97 42.97 42.97 100.00 42.97
marvin 51.29 54.93 43.41 43.41 43.41
mclaughlin 8.45 10.59 8.45 47.94 8.45
mclaughlin_limit 12.06 14.96 12.06 58.28 12.06
palomo 1.36 1.44 1.46 6.04 1.26
ranokau 45.10 33.26 21.46 21.47 21.46
tronador 67.04 74.43 50.55 68.84 50.55

Table 5. Effect of Cutting Planes on Upper Bound Obtained from LP Relaxation in
OPPSP Instances

Instance
No
cuts

No
early start

No
lifted clique

No
VRHS

No
hourglass

Ext.
cuts

Pro.
cuts

All
cuts

Base instances

calbuco 108.28 102.42 102.42 102.86 104.83 108.28 102.42 102.42
chaiten 117.26 102.01 101.34 100.03 100.29 100.88 109.23 100.00
guallatari 102.02 101.09 100.54 100.54 100.71 100.87 101.09 100.54
kd 101.75 100.21 100.21 100.22 101.10 101.75 100.21 100.21
marvinml 105.75 101.10 100.61 100.63 101.46 103.06 101.10 100.61
mclaughlin 102.52 100.34 100.34 100.37 101.37 102.52 100.34 100.34
mclaughlinlimit 102.39 100.25 100.25 100.18 101.43 102.39 100.25 100.25
palomo 114.87 103.62 101.26 101.33 103.55 111.37 103.62 101.26
ranokau 131.48 104.76 101.82 101.87 102.10 104.96 105.20 101.82
tronador 108.84 101.94 100.83 100.80 100.83 100.90 104.00 100.80
Geometric mean 109.17 101.76 100.96 100.88 101.76 103.65 102.71 100.82

Extended instances

calbuco 105.31 101.87 101.87 102.20 103.31 105.31 101.87 101.87
chaiten 117.86 101.73 101.68 100.14 100.48 100.90 109.90 100.12
guallatari 102.47 102.01 101.34 101.36 101.43 101.54 102.01 101.34
kd 100.70 100.25 100.25 100.28 100.66 100.70 100.25 100.25
marvinml 110.56 104.62 103.78 103.79 104.70 107.20 104.62 103.78
mclaughlin 103.24 100.85 100.85 100.90 101.95 103.24 100.85 100.85
mclaughlinlimit 103.16 100.75 100.75 100.77 102.09 103.16 100.75 100.75
palomo 111.53 103.68 101.75 101.88 103.04 108.07 103.68 101.75
ranokau 131.10 104.92 101.82 100.33 100.31 104.86 105.17 100.15
tronador 117.07 105.51 104.11 103.39 103.59 103.60 109.25 103.39
Geometric mean 109.95 102.60 101.81 101.50 102.15 103.83 103.78 101.42
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obtained by the heuristics is still very good, showing
a gap of 2.22%. Overall, the geometric mean of gaps is
only 1.25%, confirming that the bounds provided by
LP relaxation of OPPDP instances tend to be very tight
(as observed by Bienstock and Zuckerberg (2009)).

8.2. Effectiveness of the Methodology on Instances
of OPPSP

In addition to testing the UPIT, DTE, and ES tech-
niques, as we did in Section 8.1, we also tested the
aggregation (AGG) technique, as described in Sec-
tion 4.3. Note that the ES technique is considered for
both the preprocessing and cutting planes analysis.
Our default preprocessing option consists of applying
all four techniques. The results of our experiments
are summarized in Table 4. In the sixth column, we
can observe that the effect of preprocessing is also

significant for the OPPSP; however, the most efficient
techniques change with respect to OPPDP.
Next, we analyze the tightness of the LP relaxation

bounds for these instances and the effectiveness of the
cutting planes described in Section 5 for improving
these bounds. To do so, we compare the value of the
LP relaxation to the value of the best-known integer-
feasible solution of each instance by taking the ratio of
these two values. This ratio is computed in six dif-
ferentmanners for each instance: oncewith no cutting
planes, once with our default options (early start,
lifted clique, hourglass, and VRHS cuts), and once
with our default options minus one of the cutting
plane classes. Our cutting plane approach is simple.
In each round, we generate all possible cuts but only
add the 1, 000 most violated ones. We run no more
than ten rounds of cuts. Cuts are eliminated in

Table 6. Effect of Branch-and-Bound on the Upper Bound After Four Hours of Branching
in OPPSP Instances

Base instances Extended instances

No cuts All cuts No cuts All cuts

Instance Root BB4 Root BB4 Root BB4 Root BB4

calbuco 108.28 103.76 102.42 102.12 105.31 103.03 101.87 101.61
chaiten 117.26 103.83 100.00 100.00 117.86 109.77 100.12 100.04
guallatari 102.02 101.18 100.54 100.26 102.47 101.92 101.34 100.67
kd 101.75 100.00 100.21 100.00 100.70 100.00 100.25 100.00
marvinml 105.75 100.01 100.61 100.00 110.56 101.07 103.78 100.01
mclaughlin 102.52 100.27 100.34 100.08 103.24 100.88 100.85 100.45
mclaughlinlimit 102.39 100.00 100.25 100.01 103.16 100.62 100.75 100.29
palomo 114.87 102.75 101.26 100.14 111.53 106.52 101.75 100.76
ranokau 131.48 126.43 101.82 101.82 131.10 123.41 100.15 100.15
tronador 108.84 101.41 100.80 100.32 117.07 110.02 103.39 102.44
Geometric mean 109.17 103.71 100.82 100.47 109.95 105.51 101.42 100.64

Table 7. Effectiveness of Heuristics and Branch-and-Bound Computing Feasible Integer
Solutions in OPPSP Instances

Base instances Extended instances

No cuts All cuts No cuts All cuts

Instance Topo 1-DEST BB4 Topo 1-DEST BB4 1-DEST BB4 1-DEST BB4

calbuco 97.68 97.68 97.68 94.65 98.07 98.07 97.92 97.92 98.38 98.38
chaiten 95.67 99.53 99.53 99.15 100.00 100.00 98.18 98.18 99.96 99.96
guallatari 99.66 99.66 99.66 99.66 99.66 99.66 99.24 99.24 99.33 99.33
kd 99.86 99.97 100.00 99.95 99.96 100.00 99.98 100.00 99.97 100.00
marvinml 98.00 99.63 100.00 99.37 99.89 100.00 99.03 99.03 99.46 99.99
mclaughlin 98.75 98.75 99.34 99.62 99.62 99.62 98.63 98.63 99.40 99.40
mclaughlinlimit 99.47 99.47 100.00 99.88 99.88 99.99 99.30 99.30 99.56 99.56
palomo 96.55 98.61 98.61 93.77 98.67 98.67 99.24 99.24 99.01 99.01
ranokau 92.63 98.21 98.21 95.30 97.94 97.94 99.78 99.78 99.69 99.69
tronador 98.12 99.69 99.69 99.45 99.79 99.79 94.93 94.93 99.94 99.94
Geometric mean 97.62 99.12 99.27 98.05 99.35 99.37 98.61 98.62 99.47 99.52

Note. Topo corresponds to the value obtained from using the TopoSort heuristic, 1-DEST to the value of
the 1-DEST heuristic, and BB4 correspond to the values obtained by using the branch-and-bound al-
gorithm with a time limit of four hours.
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subsequent rounds if the corresponding dual vari-
ables are null. As is disclosed later, the objective
function value of these integer-feasible solutions is
within 1% of optimality for all instances. Thus, these
ratios provide a very good estimate of the tightness of
the bounds and the effectiveness of the cutting planes
in improving these bounds (see Table 5).

Note that the ratios have been multiplied by 100 to
facilitate readability. Thus, if the value of a ratio is 100,
the LP relaxation has the same objective function
value as the best-known integer-feasible solution
(i.e., the bound is tight). The values in the second
column of Table 5 provide evidence regarding how
weak the LP relaxation bounds computed without
cutting planes can be. On average, this bound is
within 10% of optimality, but in some instances, it can
be significantly worse (more than 30% in both ranokau
instances and almost 20% in the chaiten instances),
which stands in contrast to what we observe for the
OPPDP instances. Nonetheless, the seventh column
shows a significant tightening of the bounds after
adding the cutting planes. In general, all cutting
planes help improve the bounds (columns three
through six); however, it seems that the hourglass

cuts have the most significant impact. It is also worth
pointing out that the behaviors of the base and extended
instances are very similar. As would be expected, the
gaps of the extended instances are marginally worse,
but the cuts seem to help in both types of problems.
Table 6 demonstrates the impact which branching

for four hours has upon the upper bounds provided
by the LP relaxation as computed with and without
cutting planes. We do not add cuts at nodes of the
branch-and-bound tree in any of the instances. When
comparing the third and fourth columns, in addition
to the seventh and eighth columns, we can see that in
most instances, branching for four hours is less ef-
fective than adding cuts. On the other hand, by
comparing columns four and five, in addition to
columns eight and nine, we can see that branching
does improve the bound computed by the cutting
planes. In fact, branching reduces the average ratio to
100.47 for the extended instances and 100.64 for the
base ones.
Table 7 depicts the effectiveness of our different

techniques for computing integer-feasible solutions
to OPPSP (i.e., lower bounds). Specifically, we ana-
lyze the performance of the TopoSort heuristic
(Topo), running the 1-DEST reduction heuristic, and
branching with a time limit of four hours (BB4). All
values are normalized relative to the best upper bound
computed for each instance (which would have a value
of 100) using branch-and-bound with cutting planes.
Note that we cannot use the TopoSort heuristic on the
extended problem sets (since thematrixG appearing in
the PCPSP-C has negative coefficients).
From the second column, as in the OPPDP in-

stances, we observe that the TopoSort heuristic is very
effective. However, the 1-DEST heuristic seems to
compute slightly better solutions and has the ad-
vantage of being able to run for both the base and
extended problem instances. Table 7 also shows that
using the solutions computed from the LP relaxation
with cutting planes results in better feasible solutions
for all methods. Finally, the table shows that the best

Table 8. Effect of Branch-and-Bound on the Proved Gap in
OPPSP Instances

Base instances Extended instances

Instance Before BB4 After BB4 Before BB4 After BB4

calbuco 2.70% 2.37% 1.87% 1.63%
chaiten 0.00% 0.00% 0.13% 0.04%
guallatari 0.63% 0.36% 1.33% 0.67%
kd 0.26% 0.00% 0.31% 0.00%
marvinml 0.71% 0.00% 4.16% 0.01%
mclaughlin 0.66% 0.41% 0.99% 0.60%
mclaughlinlimit 0.37% 0.01% 0.90% 0.44%
palomo 2.43% 1.33% 1.95% 0.99%
ranokau 2.06% 2.06% 0.31% 0.31%
tronador 0.80% 0.32% 3.34% 2.44%
Geometric mean 1.06% 0.68% 1.52% 0.71%

Table 9. Relevant Times for Algorithms in OPPSP Instances

Base instances Extended instances

Instance LP no cuts LP + cuts 1-DEST BB LP no cuts LP + cuts 1-DEST BB

calbuco 10s 4m 42.9s 1m 3.9s > 4h 8.5s 4m 4.6s 7m 51.2s > 4h
chaiten 9.9s 1m 26.4s 5m 41.4s 8.1s 17s 2m 23.7s 1m 28.2s > 4h
guallatari 3.5s 23.4s 5m 26.7s > 4h 6.4s 38.6s 7m 13.9s > 4h
kd 0.2s 0.9s 0.7s 38.5s 0.1s 0.7s 1.3s 51.5s
marvinml 0.4s 2s 2.4s 15m 54.1s 0.4s 3.5s 1.6s 3h 50m 50s
mclaughlin 2.1s 12.4s 6.3s > 4h 3.4s 22.2s 7.7s > 4h
mclaughlinlimit 1.1s 5.2s 5.9s 2h 19m 44.3s 1.5s 5.6s 26.6s > 4h
palomo 3.4s 29.6s 21.7s > 4h 3.7s 31.7s 1m 19s > 4h
ranokau 9m 19.8s 6m 12.6s 13m 9.3s > 4h 10m 36.2s 14m 55.5s 41m 12.2s > 4h
tronador 2.9s 9.8s 17.5s > 4h 33.8s 1m 45.4s 6m 58.2s > 4h
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solutions are typically computed with the 1-DEST heu-
ristic, although branching sometimes yields slightly
better solutions. This is significant because it shows
that provably near-optimal solutions can be computed
without the need for customized branch-and-bound
algorithms, which are difficult to implement.

A summary of the performance of our default
features on instances of OPPSP is presented in Table 8.
Here, the gaps are computed as gap � ub−lb

ub , where lb is
the best bound computed by the branch-and-bound
algorithm and ub is the value of the best integer-
feasible solution amongst those computedby the 1-DEST
and BB4 algorithms. We refer to this as the proved gap,
since it is the best gap that can be computed using the
information obtained from the algorithm execution
and not using the best-known feasible solution to
the problem (possibly computed using some other
method). As Table 8 indicates, the algorithms perform
very well, obtaining integer-feasible solutions that,
on average, are below 1%. Although we failed to com-
pute solutions within 1% of optimality for some in-
stances, the results were still within 4% throughout.

Finally, a summary of the times required to compute
these solutions is presented in Table 9. In practice,
1-DEST often takes significantly less than four hours
to compute high-quality feasible solutions. In fact, in
most problems, solutions can be computed in just
minutes. Table 9 also shows that, in just under a third
of the instances, wewere able to terminate the branch-
and-bound run within the four hours. Though this
suggests that there is room to improve these results
through further research on the branch-and-bound
methodology, by combining these overall resultswith
those presented in Table 8, it is possible to see that our
methodology is effective in addressing the proposed
problem and efficient in terms of the overall time
required.

References
Askari-Nasab H, Awuah-Offei K, Eivazy H (2010) Large-scale open

pit production scheduling using mixed integer linear pro-
gramming. Internat. J. Mining Mineral Engrg. 2(3):185–214.

Askari-Nasab H, Pourrahimian Y, Ben-Awuah E, Kalantari S (2011)
Mixed integer linear programming formulations for open pit
production scheduling. J. Mining Sci. 47(3):338–359.

Bienstock D, Zuckerberg M (2009) A new LP algorithm for pre-
cedence constrained production scheduling. Working paper,
Columbia University, New York.

Bienstock D, Zuckerberg M (2010) Solving LP relaxations of large-
scale precedence constrained problems. Proc. 14th Conf. Integer
Programming Combinatorial Optim. (IPCO) (Mathematical Opti-
mization Society, Philadelphia), 1–14.

Bley A, Boland N, Fricke C, Froyland G (2010) A strengthened for-
mulation and cutting planes for the open pit mine production
scheduling problem. Comput. Oper. Res. 37(9):1641–1647.

Boland N, Dumitrescu I, Froyland G (2008) A multistage stochastic
programming approach to open pit mine production scheduling
with uncertain geology. Math. Optim. Soc. (2008):1–33.

Boland N, Dumitrescu I, Froyland G, Gleixner AM (2009) LP-based
disaggregation approaches to solving the open pit mining
production scheduling problem with block processing selec-
tivity. Comput. Oper. Res. 36(4):1064–1089.

Boyd EA (1993) Polyhedral results for the precedence-constrained
knapsack problem. Discrete Appl. Math. 41(3):185–201.

Caccetta L, Hill SP (2003) An application of branch and cut to open pit
mine scheduling. J. Global Optim. 27(2–3):349–365.

Chicoisne R, Espinoza D, Goycoolea M, Moreno E, Rubio E (2012) A
new algorithm for the open-pit mine production scheduling
problem. Oper. Res. 60(3):517–528.

Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1998)
Combinatorial Optimization (Wiley-Interscience, New York).

Cullenbine C, Wood K, Newman AM (2011) A sliding time window
heuristic for open pit mine block sequencing. Optim. Lett. 5(3):
365–377.

Dagdelen K (1985) Optimum multi-period open pit mine production
scheduling. Unpublished doctoral dissertation, Colorado School
of Mines, Golden.

Dagdelen K, Johnson TB (1986) Optimum open pit mine production
scheduling by Lagrangian parameterization. Ramani RV, ed.
19th APCOM Sympos. Soc. Mining Engineers (Society forMining,
Metallurgy, and Exploration, Englewood, CO), 127–142.

Dantzig GB, Wolfe P (1960) Decomposition principle for linear
programs. Oper. Res. 8(1):101–111.
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