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We propose an Integrated Stochastic Equilibrium model that considers both private auto-
mobile traffic and transit networks to incorporate the interactions between these two
modes in terms of travel time and generalized costs. In addition, in the general version
of the model, travelers are allowed to switch from personal vehicles to mass transit at
specific locations in a park-and-ride scheme. The assignment for traffic equilibrium is
based on the Markovian Traffic Equilibrium model of Baillon and Cominetti (2008),
whereas the equilibrium of the transit network is represented by the Stochastic Transit
Equilibrium model of Cortés et al. (2013). Stochastic travel decisions are made at the node
level, thereby avoiding the enumeration of routes or strategies and incorporating various
perception and uncertainty issues. We propose a Method-of-Successive-Averages algo-
rithm to calculate an Integrated Stochastic Equilibrium and conduct numerical experi-
ments to highlight the effect of stochasticity on equilibrium flows and travel times. Our
experiments show that higher stochasticity implies greater dispersion of equilibrium flows
and longer expected travel times. Results on a real network with mode combination and
park and ride facilities provide insights regarding the use of park and ride in terms of num-
ber and location, potential modal share of the combined mode option under different cir-
cumstances, and travel time impact due to the implementation of such park and ride
facilities in a real setting.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, many cities worldwide have grown considerably in terms of both population and land use,
thereby generating new demands on transportation offerings for their inhabitants. This has motivated the interest of
researchers and practitioners in modeling urban networks at different scales for various purposes. In this context, the use
of urban planning models to assess investment policies for improving the welfare of people has become an important issue.
At a strategic level of analysis, the so-called assignment and user equilibriummodels are designed to reproduce the observed
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behavior and choices of individuals with respect to transit and traffic networks. On the one hand, transit equilibriummodels
seek to reproduce the boarding and alighting stops and route choices in terms of the utilized transit lines; on the other hand,
traffic equilibrium models seek to reproduce the route choices in an urban road network. In the specialized literature, most
articles on assignment and equilibrium models that explore pure modes, focused their analysis on the case of traffic net-
works, which generally rely on Wardrop’s principle. Wardrop’s principle states that rational users select routes that mini-
mize their expected travel time. In turn, many existing transit equilibrium models have adopted this principle. However,
there is an irremediable difference between traffic and transit modes: while choosing the route that minimizes the on-
board expected travel time is sufficient in the case of traffic, in the transit dimension, the route choice is defined by the par-
ticular bus that a passenger boards within a set of different common lines that serve a bus stop that can be used to reach the
destination. Subsequently, in addition to considering the on-board travel time when using the vehicle, in the transit dimen-
sion, the waiting time also plays an important role and is linked to other variables inherent to any transit system such as
frequency and bus capacity.

The majority of the recent literature has focused on modeling preferences by assuming that passengers choose a route
strategy for their trips. Inspired in Chriqui and Robillard (1975), Spiess and Florian (1989) defined a strategy as a set of rules
that, when applied, allow a passenger to reach his/her destination. A well-formulated strategy includes the choice of the
attractive lines set at a stop; furthermore, this concept assumes that users have complete knowledge of the network struc-
ture and the conditions for recognizing and using effective strategies (Bouzaïene-Ayari et al., 2001), which may appear unre-
alistic in situations with high traffic congestion and interaction of modes. Over the past 20 years, there has been a trend in
transportation policies toward improving public transportation attractiveness by decreasing the volume of cars moving on
streets and encouraging modal interchange. Hence, park-and-ride (P&R) facilities have emerged in specific locations of urban
zones to facilitate the first leg of the trip being conducted using a personal car, followed by the second leg completing the trip
through a massive and efficient mode of public transit, namely trains, buses, or subways. These trips are performed by a non-
unique transportation mode known in the literature as combined modes. The incentive for users to choose these combined
modes is associated with congestion on the streets, frequency and fares of transit services, and the location of parking facil-
ities. To better reflect what occurs in large urban centers, we address the previous issues by means of combining two fea-
tures: mode integration and stochasticity in travel decisions.

The goal of the present paper is to develop an Integrated Stochastic Equilibrium model that considers both traffic and
transit networks to incorporate the interactions between the two pure modes in terms of travel time and generalized costs.
The integrated formulation combines the Markovian Traffic Equilibrium (MTE) model developed by Baillon and Cominetti
(2008) for the traffic network and the Stochastic Transit Equilibrium (STE) model of Cortés et al. (2013) for the transit net-
work. Both models share similarities in their formulation because travel decisions are made in both cases at the node level,
thereby avoiding the enumeration of routes or strategies. Moreover, both approaches include the effect of congestion at the
vehicular and passenger levels in addition to stochasticity as a central feature, thereby allowing the inclusion of the various
perceptions and uncertainty issues that people have regarding the features and conditions of the urban network. We empha-
size that in this work stochasticity refers only to users perception of the level of service and not to other sources of uncer-
tainty, such as stochasticity of travel demand and network supply. In addition, our model adds the combined mode
option into the analysis, allowing users to transfer from car to transit at P&R facilities. More recently, Liu and Meng
(2014) proposed a stochastic model on multimodal network, focused on bus-based P&R services, as well as elastic demand
and congestion pricing charges. Although a probit-based stochastic transit equilibrium is assumed, which is relatively a new
topic in literature, and the interaction between cars and buses in terms of travel time are largely analyzed, the framework
proposed follows the common lines method adopted in De Cea and Fernández (1993), solving a mixed integer programming
problem in order to determining the attractive line set between consecutive nodes in the transit network, and hence, com-
puting a strategy for each transit user. Using the STE model in the integrated formulation that we propose, avoids the neither
enumeration nor computation of routes or strategies.

To make this proposal applicable to real modeling conditions, we also propose an algorithm that performs the resulting
stochastic equilibrium over a generic traffic and transit network, which is tested with real data of a city using, on the transit
side, a logistic function for the boarding probability at bus stops and, on the traffic side, a Gumbel distribution for the error
term in expected travel times. In this paper, in addition to developing the integration details, we apply the algorithm to a
realistic case study corresponding to a medium-sized network of the city of Iquique, Chile.

The primary objective of the Integrated Stochastic Equilibriummodel is to become an urban planning tool for transporta-
tion decision makers. The model should be calibrated in a case-by-case modality to be able to reproduce the current passen-
ger and vehicle flows observed on the streets. Such a tool can thereby become a powerful prediction model of user behavior
when relevant changes to public transportation or road infrastructure supply are implemented.

The remainder of this paper is organized as follows. First, we present a literature review of related topics. In the
next section, we describe the transportation network and introduce the notations used throughout the paper. Next, in
Section 3, we provide the definitions of Integrated Stochastic Equilibrium with Pure and Combined Modes. Then, in
Section 4, the solution algorithms are presented. In Section 5, we present the results of various experiments to
demonstrate the potential and consistency of the stochastic formulation under different scenarios. In Section 6 we report
the implementation of the model in the real network of Iquique. The paper closes with a summary, conclusions and ideas
for further work.
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1.1. Literature review

The literature on transit equilibrium and passenger assignment goes back to Chriqui and Robillard (1975), Nguyen and
Pallotino (1988) and Spiess and Florian (1989) who rely on the concepts of strategies and hyperpaths to develop uncongested
transit equilibrium models. Cominetti and Correa (2001) developed a transit equilibrium model based on hyperpaths that
explicitly includes the effects of congestion through a queuing model at bus stops. Cepeda et al. (2006) extended the previous
model and obtained a new characterization of equilibrium. These models consider that passengers choose the optimal strat-
egy or hyperpath that minimizes the generalized travel costs, thus leading to a deterministic approach. In the context of tran-
sit equilibrium, crowding effects have been included and modeled by Rouwendal and Verhoef (2004), Tian et al. (2007) and,
more recently, de Palma et al. (2015).1 Stochastic assignment with congestion is introduced by Nguyen et al. (1998) who pro-
posed a nested logit model considering every set of competitive transit lines as a hyperpath. Xu et al. (2012) proposed a stochas-
tic user equilibrium model for a scheduled-based transit network with capacity constraints. Later on, Cortés et al. (2013)
extended Cepeda et al. (2006) by proposing a stochastic approach that considers both congestion at bus stops and the stochastic
behavior of passengers during the boarding process.

At this point of the review, it is worth mentioning other innovative approaches related to transit assignment recently
published. Ma and Fukuda (2015) used the hyperpath concept as part of a network generalized extreme-value model
(denoted N-GEV) for route choice under uncertainties, incorporating both random and deterministic aspects caused by
potential travel delay elements (in-vehicle and waiting times variability) or network disruption risks (traffic incidents).
Moyo Oliveros and Nagel (2016) studied how behavioral microscopic rules behind an agent-based simulation scheme should
be modified for obtaining results from the assignment closer to observed passenger flow counts. The authors show promising
results from the calibration and simulation processes, applied on a real network coded for the city of Berlin; it must be
noticed that using this approach requires a highly detailed and reliable user activity data apart from travel data itself, which
in many cases is difficult to collect. Sun et al. (2015) presented a Bayesian inference approach that makes use of smartcard
data in a very intensive way. The model estimates network attributes (such as the distribution of link travel time variability)
as well as passenger route choice preferences using only observations of travel time in an isolated subway network. How-
ever, the high number of unknown variables representing the attributes that appear in more complex networks could make
the calculation processes computationally difficult.

In the field of vehicle assignment on traffic networks, research has been focused on the development of stochastic mod-
els that consider the variability among users in perceiving the travel costs. If error terms in routing costs are modeled as
independent Gumbel random variables, the well-known logit model for route choice is obtained.2 Daganzo and Sheffi
(1977) proposed an alternative model based on a probit formulation for the stochastic assignments.3 To partially address
the issue of overlapping routes Bekhor and Prashker (2001) proposed a generalized nested logit model, while
Kitthamkesorn et al. (2013) formulated a nested logit model for modal split and a cross-nested logit model to account for
route overlapping, capturing in a better way the different degrees of overlapping among available routes. Baillon and
Cominetti (2008) propose a stochastic user equilibrium model based on a discrete choice at each intermediate node under
a sequential arc selection process, rather than basing the decision on the entire route, avoiding enumeration of paths, which
can become computationally impractical for large networks. The reader can extend the search of other traffic equilibrium
models considering uncertainty.4

The literature of P&R schemes have been oriented mostly to find optimal location of parking facilities (Wang et al., 2004;
Holguin-Veras et al., 2012; Farhan and Murray, 2008). Few works have studied equilibrium conditions and multimodal
choice models in this context. Among these, we can mention Fernández et al. (1994), that formulate a user equilibrium
including combined modes and modeled the choice of transfer nodes through a nested logit model assuming symmetric cost
functions; García and Marín (2005), who extended the previous model including asymmetric cost using a 2-step nested logit
formulation: mode choice at the first step and transfer node a the second (route choice is deterministic); Li et al. (2007), who
developed an equilibrium formulation that can be used to model P&R services in a multimodal network with elastic demand
showing from numerical results that P&R schemes could bring a positive, neutral or even negative welfare increment. This
last work focuses in deterministic networks, and travel time variability or other stochastic effects are ignored. Liu et al.
(2009) performed a bi-modal analysis in a competitive railway and highway system. Wang et al. (2014) proposed an optimal
parking fare scheme for P&R, which is formulated as a bilevel program: in the upper-level, the problem refers to find the
optimal parking fare for improving network performance, and in the lower-level, the problem is to evaluate network perfor-
mance in equilibrium.
1 Rouwendal and Verhoef (2004) consider crowding as an increasing function of occupancy, while Tian et al. (2007) analyze crowding as a function of number
of passengers along with seat allocation. de Palma et al. (2015) incorporated crowding in public transport, highlighting its implications in pricing, seating
capacity and optimal scheduling in the context of user equilibrium and system optimal problems.

2 See Fisk (1980), Yang et al. (2001), Meng et al. (2004), Cascetta et al. (1996) and Zhou et al. (2012) for C-logit based stochastic user equilibrium models.
3 Alternative formulations based on probit models have been proposed by Connors et al. (2007), Uchida et al. (2007), and Meng et al. (2012) among others.
4 Utility-based models (Yin and Ieda, 2001; Chen et al., 2002; Di et al., 2008), game theory based approaches (Bell, 2000; Bell and Cassir, 2002; Szeto et al.,

2006), prospect theory-based approaches (Connors and Sumalee, 2009; Sumalee et al., 2009; Xu et al., 2011; Xu et al., 2011), reliability-based models (Chen and
Zhou, 2010; Chen and Zhou, 2011).
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2. Preliminaries

We are interested in studying the movement of people from different origins to different destinations in an urban trans-
portation network over a predefined period of time. In our approach, the network consists of transit and private cars only.

To represent this network, consider a directed graph G ¼ ðN;AÞ, and denote by ia and ja the tail and head nodes of an arc
a 2 A. Let Aþi ¼ fa 2 A : ia ¼ ig and A�i ¼ fa 2 A : ja ¼ ig be the sets of outgoing and incoming arcs from/to node i 2 N, respec-
tively. Note that the set A consists of all types of arcs, including on-board, alighting, boarding (for transit), road (for traffic) and
walking arcs. Let d 2 D#N be the subset of destination nodes within the network. For each d 2 D and every node i – d, a fixed
demand gid P 0 is given. An efficient way to represent flows on arcs is to specify arc-destination flows. The set V :¼ RjAj�jDjþ
denotes the space of arc-destination flow vectors v with nonnegative entries vad P 0, whereas V0 is the set of feasible flows
v 2 V such that vad ¼ 0 for all a 2 Aþd (i.e., no flow with destination d leaves from d) and satisfying the flow conservation
constraints:
gid þ
X
a2A�i

vad ¼
X
a2Aþi

vad 8i– d: ð1Þ
Let va ¼
P

d2Dvad be the total flow on arc a.
The nodes i; d for which gid > 0 are denoted centroids and represent urban areas where demand is generated and attracted.

These nodes are connected to two separated subnetworks, namely, a transit and traffic network, through walking or connec-
tor arcs, respectively.

The transit network is composed of bus stops and bus lines that serve the bus stops. Each bus stop is represented by sev-
eral nodes: one node is associated with the platform where people wait (stop nodes), and the remaining nodes are associated

with a line that stops at that bus stop (line nodes). For each line l that serves a stop s, the line node hl
s is connected to the stop

node s by one boarding arc and one alighting arc, both of which must be properly specified (see Fig. 1). We denote NS and NL as
the sets of stop and line nodes of the transit network, respectively.

Each arc a 2 Aþi is associated with a line that stops at node i and represents either the journey between two consecutive
bus stops or the boarding/alighting processes at a given bus stop. Each arc a in the transit network is characterized by a con-
tinuous travel time function ta : V ! ½0;�ta½, where �ta is a finite upper bound, and the effective frequency function
f a : V ! ½0;þ1�. The effective frequency is either equal to þ1 or everywhere finite, in which case, for each d 2 D, we assume
that f a ! 0 when va ! �va, where �va is the capacity of the line represented by arc a, with f aðvÞ strictly decreasing with
respect to va when strictly positive. These functions reflect the congestion of transit lines. In particular, when a line is com-
pletely congested, the observed frequency of that line by a passenger waiting at that stop is zero. The travel time and fre-
quency functions of an arc may depend on the flow on other arcs in the network G. For instance, for a boarding arc, the
frequency function may depend on the flow of the arriving line segment arc; and the travel time function of an on-board
arc may depend on the flow of an arc representing a street on the traffic network where that bus circulates (when the flow
of transit is not separated from traffic in the urban network).

The structure of the transit network is illustrated in Fig. 1. Centroid d is connected to stop node s through walking arcs
that have frequencies f a ¼ 1 because these arcs are always available once the passenger decides to go to a certain stop and
have no waiting time associated with them. The travel time on these arcs is equal to the walking time between the zone and

the stop. For boarding arcs s; hl
s

� �
, the frequency is equal to the effective frequency f a that the line has on that stop, whereas

the travel time ta in these arcs is assumed to be negligible and equal to zero, although the model is sufficiently flexible to set

these variables to a value greater than zero, including passenger transfer time at stops. For alighting arcs hl
s; s

� �
, the travel

times are also set as ta ¼ 0, but the frequencies are fixed to f a ¼ 1 because a passenger does not have to wait to alight the

bus once it has stopped. Finally, we have arcs hl
s;h

l
s0

� �
that represent the on-board travel on line l between two consecutive

bus stops s and s0, where f a ¼ 1 because a passenger already boarded the bus.
Fig. 1. Stop representation on the transit network.



90 C. Pineda et al. / Transportation Research Part C 71 (2016) 86–107
The traffic network is composed of nodes that represent intersections and arcs between nodes that represent road seg-
ments. Each arc is characterized by a strictly increasing continuous travel time function of the flow on the arc, sa : R! ð0;1Þ,
which models vehicle congestion. Centroids are connected to one or more nodes in the traffic network through connector
arcs with travel times equal to zero.

3. Equilibrium

In this section we present our equilibrium concept. To define the Integrated Stochastic Equilibrium we first need to
remind the definitions of STE (Cortés et al., 2013) and MTE (Cominetti and Correa, 2001).

3.1. Stochastic transit equilibrium

The concept of stochastic transit equilibrium was developed by Cortés et al. (2013), who extended the deterministic for-
mulation of Cominetti and Correa (2001) and Cepeda et al. (2006) based on minimum hyperpath choice. This model reflects
the perception of passengers in terms of the level of service of a specific line, including factors such as traffic conditions of the
transit network and reliability of the line, among others. The model includes stochasticity through a probability distribution
associated with boarding a bus belonging to a specific line, which can be characterized by the observed frequency at a given
stop along with the expected travel time to the next stop. This formulation generates a stochastic common lines problem, in
which each line has a probability of being chosen by a passenger, even if the quality of service is poor. In addition, the for-
mulation incorporates capacity constraints at stops. A significant difference between this formulation and similar determin-
istic approaches in the literature is that it is no longer necessary to enlist all the feasible strategies. This is possible because
the expected travel time values can be analytically computed for a given destination together with the equilibrium flows on
each line, thereby simultaneously solving a set of common lines problems that are interrelated by flow conservation con-
straints at each node. Moreover, Cortés et al. (2013) proposed an algorithm to find the stochastic equilibrium.

Consider a passenger traveling to destination d that reaches an intermediate node i on his or her trip, as shown in Fig. 2.
To exit from i, the passenger can choose one of the arcs a 2 Aþi to reach the next node ja. Let sid be the expected total travel

time from node i to destination d. In the common lines problem, the passenger compares the times taðvÞ þ sjad when choos-
ing which arcs to follow. In the stochastic common lines problem, each passenger has probability pd

a of wishing to board a bus
of line a to reach destination d, given that a bus of line a is at the bus stop5:
5 Kee
pd
a ¼ P ðboarding a bus to reach destination djbus of line a is at the stopÞ:
A passenger that wishes to travel from i to d compares the expected travel time of boarding the current bus, taðvÞ þ sj
ad
,

with the expected travel time of not boarding and waiting, sid. This probability is given by a stochastic model and depends on
the expected travel time. We will assume that pd

a is a strictly decreasing continuous function of the difference between the
expected travel time on the current bus taðvÞ þ sj

ad
and the expected travel time of waiting sid;ua : R!�0;1½:
pd
a � ua taðvÞ þ sj

ad
� sid

� �
: ð2Þ
ua is such thatuaðtÞ ! 0 when t ! þ1 anduaðtÞ ! 1 when t ! �1. These functions are introduced merely as tools that are
used to model the stochastic decision of boarding and are to be determined by the modeler.

Cortés et al. (2013) assumed that the arrival process is completely renewed each time a bus arrives at a certain stop and
that the arrival of buses follows an exponential distribution. These assumptions allow us to calculate the expected travel
time and flow assignment (respectively) as in Eqs. (4) and (5) below.

The stochastic transit equilibrium is formulated as a set of simultaneous stochastic common lines problems (one for each
id pair) that are coupled by flow conservation constraints (Cortés et al., 2013). We define for each v 2 V the flow entering node
i with destination d by
xidðvÞ :¼ gid þ
X
a2A�i

vad: ð3Þ
Definition 1. Given a transit network G ¼ ðN;AÞ, a pair of feasible flow vector and expected travel times
ðv�; s�Þ 2 V0 � R

jNj�jDj
þ is a Stochastic Transit Equilibrium if for all d 2 D and i 2 N, with i – d, we have
s�id ¼
1þPa2Aþi

pd
af aðv�Þ taðv�Þ þ s�jad

� �
P

a2Aþi
f aðv�Þpd

a
; ð4Þ
p in mind that arc a and destination d are not necessarily directly connected.



Fig. 2. Common lines problem on a general transit network.
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v�ad ¼ xidðv�Þ f aðv�Þpd
aP

a2Aþi
f aðv�Þpd

a
; 8a 2 Aþi ; ð5Þ

pd
a ¼ ua taðv�Þ þ s�j

ad
� s�id

� �
; 8a 2 Aþi : ð6Þ
3.2. Markovian Traffic Equilibrium

The basis of the Markovian equilibrium model of traffic networks in Baillon and Cominetti (2008) is that car users travel
to their destinations through a sequential arc selection process based on a discrete choice model at every intermediate node i
that they reach during their trip. This process is governed by an embedded Markov chain, and thus, the authors called the
model Markovian Traffic Equilibrium (MTE). They proved that this formulation leads to a strictly convex minimization prob-
lem that avoids path enumeration, and they also proposed computational methods that are effective even for large networks.

Let the random variable ~sa ¼ sa þ ma be the travel time on arc a 2 Aþi , where sa is the deterministic travel time on that arc,
and let ma be an error term that represents variability between drivers’ perceptions. It is assumed that these terms have a
continuous distribution, where EðmaÞ ¼ 0. Let Rid be the set of all available paths from i to d. Then, the optimal travel time
from i to d is given by
~sid ¼min
r2Rid

X
a2r

~sa

( )
:

Given a destination d, a driver arrives at node i and compares the travel time or generalized costs using each of the out-
going arcs of node i. Let ~zad be the stochastic time or cost to destination d using arc a:
~zad ¼ ~sa þ ~sj
ad
¼ zad þ �ad ð7Þ
where zad ¼ E ~zadð Þ and Eð�adÞ ¼ 0. The driver selects the arc that has the shortest time between the set a 2 Aþi according to
their perception. This process is repeated at each intermediate node during the trip. Then, for each destination d 2 D, there
is an underlying Markov chain in the network, where for a node i– d, the transition probabilities are given by
qd
a ¼

P ~zad 6 ~za0d;8a0 2 Aþi
� �

if a 2 Aþi
0 if not

(

while the destination node is an absorbing state of the chain, i.e., qd
ðd;dÞ ¼ 1.

Baillon and Cominetti (2008) show that, for each pair id, the probability of using arc a from node i to reach destination d
may be expressed using the expected travel time function wid : R

jAj ! R defined by:
widðzdÞ � E min
a2Aþi
fzad þ �adg

 !
ð8Þ
where zd represents the vector that contains all of the values zad of the network for a given destination d. Indeed, these tran-
sition probabilities take the form
P ~zad 6 ~za0d8a0 2 Aþi
� � ¼ @wid

@zad
ðzdÞ: ð9Þ
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The functions wid, which are component-wise non-decreasing, concave and smooth, are determined by the random vector
�d and, in turn, by the variables ma. The functions that belong to this class, denoted by E, and where wdd � 0, permit an ana-
lytical characterization, as shown in Baillon and Cominetti (2008).

With these elements, it is possible to describe Bellman’s dynamic programming equations as ~sid ¼ mina2Aþi
~zad. Taking the

expectation of both sides, we have sid ¼ widðzdÞ. Because Eq. (7) gives zad ¼ sa þ sj
ad
, the Bellman equations can be expressed

in terms of the sid variables as follows:
sid ¼ wid sa þ sj
ad

� �
a2Aþi

� �
: ð10Þ
Furthermore, analogous to the STE, we have the network load and flow conservation constraints at each node as in Eqs.
(5) and (3). Hence, the flow distribution system can be written as
xid ¼ gid þ
X
a2A�i

vad

vad ¼ xid � qd
a 8i– d and 8a 2 Aþi :

ð11Þ
Given a family of functions wid 2 E (one for each id 2 N � D pair) with wdd � 0, the MTE is formalized as follows:

Definition 2. Given a traffic network G ¼ ðN;AÞ, a vector v� 2 RjAj is a Markovian Traffic Equilibrium if and only if
v�a ¼

P
d2Dv�ad, where the components v�ad satisfy the flow distribution system (11) with sid solving (10) for sa ¼ sa v�a

� �
.

In tests involving large networks, Baillon and Cominetti (2008) used a BPR-type formulation for travel time functions
saðvaÞ and a logit formulation family with parameters bid for each expected travel time function widð�Þ. With this, expressions
(10) and (9) become
sid ¼ � 1
bid

ln
X
a2Aþi

e
�bid saþsj

ad

� �0
@

1
A; ð12Þ

qd
a ¼

e
�bid saþsj

ad

� �
P

a02Aþia
e
�bid sa0 þsja0 d
� � ; ð13Þ
respectively.

3.3. Integrated Stochastic Equilibrium

3.3.1. Integrated Stochastic Equilibrium with pure mode choice
In this section, we develop a joint equilibrium model that couples the STE and MTE models. Both formulations

interact at the demand level associated with each origin-destination pair and the corresponding travel times because
traffic flow may affect transit travel times, as both modes may use the same road infrastructure. Conceptually, the
Integrated Stochastic Equilibrium model relies on the following premise: certain users of the network perform a modal
choice at their origin nodes prior to starting their trips. These users, who have access to both modes, decide whether
to use a car or the bus, thereby remaining on the traffic network or being transferred to the transit network. In turn,
users who have only the bus as an available option are captive users of the bus and move only through the transit
network.

Let us denote Um
id as the generalized cost of traveling from origin i to destination d by mode m, with m 2 fB;Cg represent-

ing bus and car, respectively. The modal choice for users with car and bus availability is established using a logit function
with dispersion parameter bM , that considers the generalized costs of traveling in both networks. Let GB

id denote the number

of users who can only use the bus to travel between the OD pair id; and let GC
id denote the number of users that can freely

choose between the car and the bus to perform the trip on the OD pair. Then, given the values of the generalized costs, the
input demand on both transit and traffic networks are
gB
id ¼ GB

id þ GC
id �

ebMUB
id

ebMUB
id þ ebMUC

id

ð14Þ

gC
id ¼ GC

id � GC
id �

ebMUB
id

ebMUB
id þ ebMUC

id

; ð15Þ



Fig. 3. Modal split on traffic and transit networks with pure modes.

C. Pineda et al. / Transportation Research Part C 71 (2016) 86–107 93
respectively. Note that expression GC
id � e

bMUB
id

e
bMUB

idþebMUC
id
represents the total number of users who observe travel costs in both

modes but prefer to use the bus, making a transference from the traffic to the transit network. Graphically, the modal split
process is shown in Fig. 3.

In our integrated model, the generalized cost of traveling from i to d by mode m, namely, Um
id , is given by a generalized

cost or utility function um : Rþ ! R. umðtÞ is the generalized cost of using modemwhen the travel time on that mode is t. This
utility function may include the monetary costs of using each mode – fares, fuel prices, etc. – and other issues involving
modal choice such as comfort and modal attractiveness.

With these elements, we are now able to formalize the definition of integrated equilibrium with pure modes.

Definition 3. Given an urban transportation network G ¼ ðN;AÞ containing transit and traffic, a tuple U�; g�;v�; s�ð Þ is an
Integrated Stochastic Equilibrium if flows and expected travel times in the traffic network vC� ; sC�

� �
are an MTE with demand

gC
�
, flows and expected total times in the transit network vB� ; sB�

� �
are an STE with demand gB

�
given vC� , and ðg�;U�Þ satisfy

Eqs. (14) and (15) with Um�
id ¼ um sm�id

� �
for all i 2 N and d 2 D.
3.3.2. Integrated Stochastic Equilibrium with combined mode choice
A natural extension of the previous model is the addition of the combined option of traveling through both networks dur-

ing the realization of an OD trip. In our proposal, we consider that a traveler that can use both a car and a bus may choose to
drive during the first part of the trip, park the car at an intermediate transfer station, and, from there, complete the trip by
public transportation toward the final destination. This modality of travel is known as park-and-ride, which is a system that
successfully operates in many cities worldwide (e.g., Boston, New York, Oxford, Montreal, Norwich, and Bristol). In general,
the transfer stations are located in the suburbs of the city, which are places that should have good connectivity to the public
transportation network and adequate facilities for parking, thus improving the use of transit systems within the city and con-
sequently reducing the number of private cars within congested urban zones.

In this case, we decide to use a hierarchical logit formulation to represent the modal choice process with combined modes
(García and Marín, 2005). There are two decision levels. First, at the upper level, the decision is performed by choosing the
mode, which can be either car only, bus only, or car and bus as a combined mode. If the traveler chooses the combined
option, then there is a (lower) second-level decision, in which the user must choose where to transfer between their car
and the bus among a predefined set of options. The reason for having two decision levels (and therefore, not simply analyzing
at the same level all possible options between modes and transfer stations) is because there is a strong correlation between
the combined mode options; thus, the assumption underlying the independent alternatives behind the multinomial logit
model does not apply in this case.

Let us denote mode m 2 fB;C; Pg for bus, car and combined mode, respectively, and let KP � D be the set of transfer nodes
within the transportation network, which allow people to transfer between cars and buses. Then, we denote by gP

id;k the total
number of users who travel between origin i and destination d using the combined mode P and choosing transfer node
k 2 KP . Graphically, the demand split for those travelers with both pure modes available is shown in Fig. 4, where each level
represents a decision that must be made by the traveler.
Fig. 4. Decision tree of modal and transfer node choice for users with car and bus availability.
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In the same way as for the integrated model with pure modes, in this combined formulation, there is a primary mode
choice that considers the generalized costs of each option. Let cmid be the probability of choosing mode m 2 fB;C; Pg to travel
between the OD pair id. Hence,
cmid ¼
ebMUm

idP
m02fB;C;Pge

bMUm0
id

: ð16Þ
where bM is the dispersion parameter associated with the logit model at the modal choice level.
The generalized costs in the case of pure car or bus modes may be modeled as in the previous subsection. However, for the

combined mode, we have to estimate an expected maximum utility function considering all transfer nodes. Let UP
id;k be the

utility of using the combined mode between the pair id using transfer node k. Then, an estimate of the maximum utility
among all transfer nodes, which is the representative utility of choosing the combined mode at the upper level of the deci-
sion tree, can be determined using a log-sum formulation:
UP
id ¼

1
bP

ln
X
k2KP

ebP �U
P
id;k

 !
; ð17Þ
where bP is a measure of correlation in unobserved factors within the parking nest under a hierarchical logit scheme.
Given that a traveler has chosen the combined mode, the conditional probability of choosing k as a transfer node can be

computed as
cPid;k ¼
ebP �U

P
id;kP

k02KP
ebP �U

P
id;k0

: ð18Þ
Finally, the demand between the pair id on transit and traffic networks are
gB
id ¼ GB

id þ cBid � GC
id ð19Þ

gC
id ¼ cCid � GC

id ð20Þ
respectively, and the total number of travelers who choose the combined mode between the id pair, while transferring at the
k transfer node, is
gP
id;k ¼ cPid;k � cPid � GC

id|fflfflfflffl{zfflfflfflffl}
gP
id

: ð21Þ
Graphically, the modal split for traffic and transit networks in the Integrated Stochastic Equilibrium with combined
modes is shown in Fig. 5.

In the integrated model with combined modes, the generalized cost of traveling from i to d via mode m remains the same
as in the previous section for the pure modes ðB;CÞ; however, in the case of the combined option ðPÞ, the generalized cost or

utility function UP
id depends on the vector UP

id;k

� �
k2KP

. Each UP
id;k is given by a utility function (one for each parking facility

k 2 KP) uP
k : R2

þ � R N�Dj j
þ ! R, where uP

k t1; t2; gP
k

� �
is the generalized cost when the travel time by car from the origin i to

the parking location k is t1 and that from the parking location to the destination d by transit is t2. This functions depend

as well on the profile of users that utilize the park-and-ride facility located in k 2 KP ; gP
k ¼ gP

id;k

� �
N�D

, because they can con-

gest this parking facility, which can increase the waiting times of users. In addition to the expected travel times in both car
and bus segments of the trip, this function can also depend on other aspects such as parking safety, comfort, accessibility,
and parking fares.

With these elements, we are now able to formalize the definition of integrated equilibria with combined modes.
Fig. 5. Modal split on traffic and transit networks with combined modes.
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Definition 4. Given an urban transportation network G ¼ ðN;AÞ that contains transit, traffic and parking facilities, a tuple
U�; g�;v�; s�ð Þ is an Integrated Stochastic Equilibrium with Combined Modes if flows and expected travel times in the
traffic network vC� ; sC�

� �
are an MTE; flows and expected total times in the transit network ðvB� ; sB� Þ are an STE; demand

g� satisfies Eqs. (19)–(21); Um�
id ¼ um sm�id

� �
for m ¼ fB;Cg;UP�

id satisfies Eq. (17); and UP�id;k ¼ uP
k sCik
� ��

; sB�kd; gP
�

k for all i 2 N; d 2 D
and k 2 KP .
4. Equilibrium algorithms

In this section, we present an efficient algorithm that computes an Integrated Stochastic Equilibrium. The procedure is an
iterative method based on the Method of Successive Averages (MSA). At the beginning of each iteration, in addition to com-
puting the travel times and effective frequencies in both networks, demand levels are obtained by calculating respective util-
ity functions for each mode, considering the levels of service obtained in the previous iteration as inputs for the subsequent
iteration. The algorithm is designed to reach the equilibrium for the STE and MTE models separately, which computationally
can be solved in parallel and not necessarily through a sequential execution. The algorithm compares the resulting vector of
flows with respect to the flows obtained in the previous iteration until reaching a predefined convergence criterion based on
the similarity of the flows. Before discussing the algorithms to find the described equilibria, in the following section, we pre-
sent certain considerations that are required to implement the STE module.

4.1. STE implementation details

The STE model contains cross dependencies among the expected travel time sid, conditional probability of boarding a
certain bus pd

a , effective frequencies f a, travel time ta and destination flows vad. Because of these dependencies, the STE
implementation becomes in essence the solution of a fixed-point problem among these values, which are interrelated in
Definition 1 and Eq. (1) for flow conservation at each node.

Recalling the definition of our extended network (see Fig. 1), in the case of line nodes, all outgoing arcs from those
nodes – alighting and on-board arcs – have infinite frequency in our representation; the same property applies to walking
arcs associated with centroids. For these cases, the effective frequencies in Eqs. (4)–(6) are replaced by f1, and we then take
the limit of those equations as f1 ! 1, thereby obtaining
s�id ¼ lim
f1!1

1þPa2Aþi
pd
af1 taðv�Þ þ s�j

ad

� �
P

a2Aþi
f1pd

a
¼
P

a2Aþi
pd
a taðv�Þ þ s�j

ad

� �
P

a2Aþi
pd
a

; ð22Þ

v�ad ¼ lim
f1!1

xidðv�Þ f1p
d
aP

a2Aþi
f1pd

a
¼ xidðv�Þ pd

aP
a2Aþi

pd
a
; ð23Þ

pd
a ¼ ua taðv�Þ þ s�j

ad
� s�id

� �
: ð24Þ
Moreover, stop nodes combine finite and infinite frequencies on their outgoing arcs. To use the equations in Definition 1,
we include the following consideration in the algorithm: when computing the equilibrium for destination d, we remove all
boarding arcs from stop nodes adjacent to d because it is assumed that passengers are rational and that they will not ride
another bus; instead, these passenger will walk toward the destination. Conversely, if none of the centroids adjacent to
the stop is the destination d, then walking arcs outgoing from this node are not considered, thus forcing passengers to board
another bus to reach their destinations. These modifications are shown in Fig. 6, in which dashed arcs are not considered in
each case. Note that after these modifications, for each node, all incoming/outgoing arcs have either infinite or finite fre-
quency, thereby allowing travel times and induced flows to be computed. We denote the resulting set of arcs on the
extended network as A.

The expected travel times sBid are obtained by solving a system of linear equations. At each node i 2 N of the extended
network and for each destination d 2 D, we obtain the expression for sid of Definition 1 or Eqs. (22)–(24), depending on
the type of node. For the case in which i is a stop node and the destination d is not adjacent to i, by rearranging terms of
Definition 1, we obtain the following:
X
a2Aþi

f aðvÞpd
a sBid � sBj

ad

� �
¼ 1þ

X
a2Aþi

f aðvÞpd
ataðvÞ; 8i 2 NS with ði;dÞ R A: ð25Þ
If i is a line, centroid or stop node adjacent to destination d, then for all outgoing arcs of i; f aðvÞ ! 1 holds, and the redef-
inition of sid in Eq. (22) applies. By rearranging the terms in Eq. (22), we obtain



Fig. 6. STE network modifications for stop nodes when computing the equilibrium for destination d.
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X
a2Aþi

pd
a sBid � sBj

ad

� �
¼
X
a2Aþi

pd
ataðvÞ; 8i 2 D [ NL [ NS with ði;dÞ 2 A: ð26Þ
As shown, Eqs. (25) and (26) form a sparse system of linear equations of size jNj � jNj, which can be efficiently solved even
for large-scale networks, thereby obtaining the values sBid for a given flow vector v.

4.2. Integrated equilibrium algorithm with combined modes

Because the Integrated Stochastic Equilibrium with pure modes is a particular instance of the more general model
with combined modes, the implementation of an algorithm to solve the equilibrium in a multimodal network will
be based on the more general model. The structure used to implement the algorithm is the following: We use an
iterative MSA-based algorithm, in which the expected travel time matrices in each network are first computed; then,
the levels of demand in each network are determined using a modal split model; and finally, with the obtained
demands, we solve the equilibrium sub-models for each mode. A stop criteria based on the similarity of flow vectors
is proposed.

The general integrated equilibrium algorithm is described in Algorithm 1. The stochastic transit and traffic equilibrium
modules are described step-by-step in Algorithms 2 and 3, respectively. Note that for the Integrated Stochastic Equilibrium
with pure mode implementation, it is sufficient to define the transfer node subset as KP ¼£.

Algorithm 1. Integrated Stochastic Equilibrium with combined modes

1: Set initial feasible assignment vC;0 and vB;0 in both networks
2: Set n 0.
3: repeat
4: Set n nþ 1.
5: Modal split model: gB;nid ; gC;nid ; gP;nid;k
6: Compute effective frequencies f na ¼ f aðvB;n�1Þ.
7: Compute travel time tna ¼ taðvn�1Þ, and sna ¼ saðvC;n�1Þ
8: Solve transit equilibrium (see Algorithm 2) with transit demands:
gB;n
id þ

X
i02N

gP;n
i0d;i 8i 2 KP ; d 2 D

gB;n
id 8i 2 N n KP ; d 2 D
9: Solve traffic equilibrium (see Algorithm 3) with traffic demands:
gC;n
id þ

X
d02D

gP;n
id0 ;d 8i 2 N; d 2 KP

gC;n
id 8i 2 N; d 2 D n KP
10: until

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a

�vB;nþ1
a ��vB;n

að Þ2
q

P
a
�vB;n
a

6 � and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a

�vC;nþ1
a ��vC;n

að Þ2
q

P
a
�vC;n
a

6 �.
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Algorithm 2. Transit module for Integrated Stochastic Equilibrium

1: for all destination d 2 D do
2: Set l 0.
3: Compute initial conditional probabilities pd;0a ¼ ud

i tna þ sB;njad
� sB;nid

� �
.

4: repeat
5: Set l lþ 1.
6: Solve system of linear equations for expected travel time
sB;lid ¼
1þPa2Aþi

f nap
d;l�1
a � tna þ sB;lj

ad

� �
P

a2Aþi
f nap

d;l�1
a

8i 2 NS with ði; dÞ R A
or,
sB;lid ¼
P

a2Aþi
pd;l�1
a � tna þ sB;lj

ad

� �
P

a2Aþi
pd;l�1
a

8i 2 D [ NL [ NS with ði;dÞ 2 A
7: Compute conditional probabilities pd;la ¼ ud
i tna þ sB;ljad

� sB;lid

� �
.

8: until
sB;l
id
�sB;l�1

idk k
sB;l
idk k < �.

9: Set pd;na ¼ pd;la

10: Compute induced flows
v̂ad ¼ xBid
f nap

d;n
aP

a2Aþi
f nap

d;n
a

8i 2 NS with ði; dÞ R A
or,
v̂ad ¼ xBid
pd;n
aP

a2Aþi
pd;n
a

8i 2 D;NL and 8i 2 NS with ði; dÞ 2 A
11: end for
12: Update transit flow assignment vB;n ¼ ð1� anÞvB;n�1 þ anv̂ .
Algorithm 3. Traffic module for Integrated Stochastic Equilibrium

1: for all destination d 2 D do
2: Set l 0.
3: Set z0ad ¼ sna
4: Set sC;0id ¼ 0
5: repeat
6: Set l lþ 1.
7: Compute expected travel time sC;lid ¼ wid zl�1ad

� �
8: Compute expected travel time by arcs zlad ¼ sna þ sC;ljad

.

9: until
sC;l
id
�sC;l�1

idk k
sC;l
idk k < �.

10: Compute probabilities
qd;n
a ¼

@wid zlad
� �

@zlad
11: Compute induced flow
v̂ad ¼ xCid
qd;n
aP

a2Aþi
qd;n
a

8i 2 D [ NS
12: end for
13: Update traffic flow assignment vC;n ¼ ð1� anÞvC;n�1 þ anv̂ .



98 C. Pineda et al. / Transportation Research Part C 71 (2016) 86–107
In some cases, the MSA convergence is not monotonic. This situation occurs because the descent direction may point in a
direction such that the norm in certain iterations increases; it could also occur because the MSA step, given by an, is fixed a
priori and may exceed the optimal descent weight (Sheffi, 1985). A convergence criterion that is in general monotonically
decreasing can be obtained by averaging the flows over the previous r iterations. In this case, if �vn

a denotes the average flow
in the iteration n,
�vn
a ¼

1
r
vn

a þ vn�1
a þ . . .þ vn�rþ1

a

� � ð27Þ
then the convergence criteria may be based on the similarity of flows for the previous r iterations. For example,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a
�vnþ1
a � �vn

a

� �2q
P

a
�vn
a

6 �: ð28Þ
The latter is the convergence criterion implemented in Algorithm 1.
Although the latter is the convergence criterion implemented in Algorithm 1, there are other methods which may

improve the traditional MSA algorithm performance, and consequently, improve the performance of the Integrated Stochas-
tic Equilibrium algorithm. In particular, Liu et al. (2009) proposed two methods for choosing the step size an. Realizing that
the auxiliary flow vn

a approaches the solution point of the problem when the iteration number is large, the authors intro-
duced at first place, the Method of Successive Weighted Averages (MSWA) that assigns more weight to the later intermediate
flows vn

a , instead of a simple equal average as in MSA. However, in both traditional MSA and MSWA, the step size are deter-
mined a priori and do not consider any information generated from the algorithm execution. Two disadvantages arise from
the latter: (1) the step size may be too large, and leads the next iteration solution lying farther from the optimal solution
from the previous one; and (2) when the current solution is close to the optimal solution, the step size may be too small,
causing an extremely slow convergence speed. Hence, the authors proposed a self-regulated averaging method, where the
step sizes are updated by evaluating a potential function, which could be the distance between the generated auxiliary flow
vn

a and current solution �vn
a . The self-evaluating method gives more aggressive exploration of the solution space – i.e. large

step sizes – when current iteration converge – or the distance between auxiliary flow and current solution are relative small;
otherwise, this method gives small step sizes when the solutions diverge. Numerical experiments revealed that self-
regulated method is more preferable than MSWA. In the latter, a not known optimal step size is required a priori for each
individual problem, for a better convergence speed and accuracy; while in the former, a pseudo-optimal step size is calcu-
lated by the own solution procedure.

5. Numerical experiments

In this section we analyze various numerical experiments by observing the behavior of the Integrated Stochastic Equilib-
rium. The pure mode algorithm is implemented in a simple network, focusing first on transit equilibrium and comparing the
results among the stochastic model (Cortés et al., 2013) and the deterministic version (Cominetti and Correa, 2001; Cepeda
et al., 2006) and then focusing in the integrated equilibrium comparing instances with different levels of stochasticity on
each mode.

5.1. Stochasticity in the transit equilibrium model

For the sake of completeness, we first illustrate the effect of stochasticity on the transit network. We use the Sioux Falls
city coding provided by Bar-Gera (2011) whose layout corresponds to a traffic network, although we use the same config-
urations for coding the transit mode, which is similar to the behavior of an urban subway system.

The Sioux Falls network contains 24 nodes, each generating and attracting demand. Therefore, each node is simultane-
ously a centroid and a stop node. There are 360,000 total trips generated per hour in the system. For testing purposes, we
designed 4 subway lines around the city, as shown in Fig. 7. Each line l has a nominal frequency of ll ¼ 30 trains=h and
capacity of cl ¼ 1500 pax=train. The conditional probability function used for this experiment is the following logistic
distribution:
pd
a � ud

a ta þ sj
ad
� sid

� �
¼ 1

1þ e
h taþsj

ad
�sid

� � ; 8a 2 A; 8d 2 D; h 2 Rþ: ð29Þ
We tested a set of instances for this network, in which the only difference is the parameter h of the conditional probability
pd
a , which ranges from h ¼ 30 (deterministic) to h ¼ 0:2 (highly stochastic). Hence, we obtain different stochasticity levels in

users’ decision-making processes between instances. The formulation of the effective frequency is the same as that used in
Cepeda et al. (2006), with the exponent b ¼ 5:0. The convergence criterion is set as � ¼ 10�9, and the MSA parameter selected
for updating the flow is an ¼ 1

n, where n is the number of the current iteration in the general algorithm. The transit equilib-
rium is obtained after approximately 250 iterations for each instance.



Fig. 7. Design of transit lines in Sioux Falls.
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To analyze the results obtained using the transit equilibrium model, it is possible to perform comparisons between the
deterministic and stochastic instances if we define adequate dispersion indicators in equilibrium flows over the network.
In principle, in deterministic instances, users choose the minimum hyperpath, which causes the arcs or segments contained
in this strategy to have flows v�ad > 0, whereas for arcs that belong to suboptimal hyperpaths, v�ad ¼ 0. Then, we define the

level of network usage, denoted WB
d , as the ratio between the number of line segments used in the network to reach the des-

tination d and the total number of line segments available in the network; �WB is the average level of network usage over all
destinations. A used segment is such that v�ad > 0. However, because the transit equilibrium algorithm is a numerical imple-
mentation, we consider that a used segment is such that v�ad > n 	 0. In the case of Sioux Falls, n ¼ 0:5 ½pax=h�. As expected, a
reduction in h causes an increase in the average level of network usage over all destinations �WB. In Table 1 we display the
values of �WB and we illustrate the level of network usage for destination d ¼ 10 between deterministic and highly stochastic
instances with Figs. 8 and 9.
5.2. Integrated Stochastic Equilibrium with pure modes

In this experiment, we analyzed the Integrated Stochastic Equilibrium including pure modes only; a private car transport
network of Sioux Falls city is used (Bar-Gera, 2011), which contains 24 centroids, 76 unidirectional arcs, and total demand of
360,000 trips=h. Moreover, the public transport network and simulation parameters are identical to those used in testing of
the transit equilibrium algorithm, as described in Section 5.1.

The objective of this experiment is to measure the impact of the stochasticity in both the traffic and the transit networks.
For this purpose, a logistic formulation is used in the transit model for the conditional probability pa (Eq. (29)), varying the
parameter h. In the case of private cars, a log-sum formulation was chosen for computing the expected minimum travel time
sCid, in which case the parameter b is varied to obtain different levels of stochasticity. Note that the modal utility functions are

based only on expected travel times for each network, i.e., UC
id ¼ �sCid and UB

id ¼ �sBid.
The general results obtained using the Integrated Stochastic Equilibrium algorithm with pure modes for the Sioux Falls

network are shown in Tables 2 and 3. These tables summarize the modal split for users with car and transit availability and
network usage indicators.

As shown in Table 2, increasing stochasticity in the transit system and maintaining a deterministic formulation in the
traffic formulation causes the users to tend to choose a car in higher proportions because the expected travel time computed
Table 1
Average level of Sioux Falls network usage.

h 30.0 15.0 8.0 4.0 2.0 1.0 0.5 0.3 0.2

�WB 0.44 0.44 0.46 0.49 0.65 0.93 0.96 0.96 0.96



Fig. 8. Transit segments used in the deterministic transit equilibrium for Sioux Falls instance. h ¼ 30 and WB
10 ¼ 0:46.
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in equilibrium on transit integrates suboptimal strategies, thereby increasing these values. Hence, users who have modal
choice availability tend to choose the mode that is more predictable in relation to travel times. Furthermore, the same results
indicate that transit network usage strongly increases as the stochasticity increases, from 0.43 in the deterministic instance
to 0.96 in the fully stochastic instance.

A similar analysis can be performed by observing the results in Table 3 when increasing stochasticity in traffic system and
with a deterministic formulation remaining in transit formulation. In this case, increasing the stochasticity for traffic causes a
higher proportion of users to choose public transport due to less variability in expected travel times; however, changes in the
modal split are lower compared to the previous case. On the other hand, stochasticity in traffic increases the use of arcs in the
private transport network such that, on average, the flow for a given destination is dispersed through all available arcs.

6. Integrated Stochastic Equilibrium with park-and-ride in a real network

In this section we implement the Integrated Stochastic Equilibriumwith the combined modes algorithm and we perform/
report a study on the effect of installing park-and-ride facilities in a real network representation of the city of Iquique in the
north of Chile.

The real transit network contains 72 centroids, 485 bus stops and 2118 unidirectional transit line segments. The network
belongs to a weekday morning peak period, calibrated for the year 1998, with 5449 trips=h being performed during this per-
iod. The size of the transit extended network for this city is 2711 nodes – including centroids, stops and line nodes – and
7144 arcs – including walking, boarding, alighting and on-board arcs.

On the other hand, the traffic network includes 72 centroids, 485 intersection nodes and 2180 unidirectional road arcs,
which are identical to those contained in the transit network using the same road infrastructure, for a total of 10,646 trips=h.

The Integrated Stochastic Equilibrium with combined modes requires modal utility functions and parameters to be
defined to obtain the modal share of users that have car, bus and combined mode availability. The network coding, modal
utility functions and various calibration parameters for the modal split model for Iquique were provided by the Ministry of
Transport and Telecommunications of the Chilean Government. We will use the following utility function, uC , which is used
in equilibrium to calculate for each id the utility UC

id of a user traveling from i to d using a car:
uCðsCidÞ ¼ hC þ htgen � sCid þ hcost � s
C
idcunit
I

ð30Þ



Table 2
Results from the Integrated Stochastic Equilibrium with pure modes for the Sioux Falls network, stochasticity in transit.

h (Transit) b (Traffic) Car share (%) Bus share (%) �WB �WC

30.0 12.0 67.8 32.2 0.43 0.48
15.0 12.0 67.8 32.2 0.44 0.48
8.0 12.0 67.8 32.2 0.44 0.48
4.0 12.0 67.8 32.2 0.46 0.48
2.0 12.0 68.2 31.8 0.49 0.48
1.0 12.0 69.4 30.6 0.65 0.49
0.5 12.0 72.3 27.7 0.93 0.49
0.3 12.0 76.9 23.1 0.96 0.50
0.2 12.0 81.7 18.3 0.96 0.52

Fig. 9. Transit segments used in the stochastic transit equilibrium for Sioux Falls instance. h ¼ 0:5 and WB
10 ¼ 0:91.

Table 3
Results from the Integrated Stochastic Equilibrium with pure modes for the Sioux Falls network, stochasticity in traffic.

h (Transit) b (Traffic) Car share (%) Bus share (%) �WB �WC

30.0 12.0 67.8 32.2 0.43 0.48
30.0 6.0 67.9 32.1 0.43 0.49
30.0 3.0 68.0 32.0 0.43 0.49
30.0 1.5 68.0 32.0 0.43 0.57
30.0 1.0 67.8 32.2 0.43 0.69
30.0 0.5 66.6 33.4 0.44 0.98
30.0 0.4 65.8 34.2 0.44 1.00
30.0 0.35 64.9 35.1 0.44 1.00
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where
hC
Table 4
Modal utility parameters for Iquique, year 1998.

Parameter Mode

Car Bus

hm 0.502 0.278
htgen �0.023 �0.023
hcost �43.800 �43.800

a Not a calibrated parameter. Defined for simula
car modal constant [utility]

htgen
 generalized time parameter [utility/min]

hcost
 monetary cost parameter [utility/$]

cunit
 car use monetary cost per unit time [$/min]

I
 income level [$]
In addition, the utility function for passengers using a bus, uB, which is used in equilibrium to calculate for each id the
utility UB

id of a user traveling from i to d using the bus mode, is:
uBðsBidÞ ¼ hB þ htgen � sBid þ hcost � cbusI ð31Þ
where
hB
Combined

�1.500a
�0.023
�43.800

tion purposes.
bus modal constant [utility]

cbus
 bus fare [$]
The remaining parameters for the bus utility function are the same as those defined in the case of the car in Eq. (30), and
to increase the performance of the simulation, most of the parameters for Iquique, shown in Table 4, were previously cali-
brated. We use bM ¼ 1 and bP ¼ 1:41 for the modal choice and parking choice parameters.

The combined mode representative utility UP
id using a log-sum formulation of Eq. (17) is required. First, we need to com-

pute the value of the utility corresponding to the combined mode, in which the interchange between car and bus occurs at
parking facility k 2 KP; UP

id;k. For this purpose, we assume that this utility has a functional cost and time structure similar to
the sum of utilities of choosing each mode in their respective section of the trip. In addition, we add a constant hP that rep-
resents the modal interchange disutility at the parking lot, which reflects other conditions not included as variables in our
model such as comfort, security, accessibility, and infrastructure. In the case of Iquique, this constant was not previously cal-
ibrated; therefore, a consistent value is assumed to facilitate the simulation scenario. Moreover, we will add to the combined
mode utility the fare of parking a car cpark as well as the queuing time caused by other vehicles when entering the parking lot.

The latter term, denoted by Wk, is computed as follows: consider that the parking entrance is a queue of type M=M=r, where
arrivals and service in the parking facility are assumed to be Markovian with arrival rates kk together with r available servers,
each of which having a service rate lk. Then, the average waiting time in a queue with these characteristics can be approx-
imated by Larson and Odoni (1981)
Wk 	
kk

ðrklkÞ2

1� kk
rklk

þ 1
lk

: ð32Þ
Eq. (32) has an implicit capacity constraint because it is only valid when kk
rklk

< 1. In the algorithm implementation, the

arrival rate to the parking lot is equal to the sum over all the id pairs of the number of users who travel between origin i
and destination d using the combined mode P and choosing as transfer node the centroid that represents the parking lot, i.e.,
kk ¼
X

ði;dÞ2N�D
gP
id;k:
Thus, the utility of choosing the combined mode using parking lot k as a modal interchange location is as follows:
uP
k sCik; s

B
kd; g

P
k

� � ¼ hP þ sCik þWk þ sBkd
� �

htgen þ hcost
sCikcunit þ ckpark þ cbus
� �

I
:
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where the dependence on gP
k is implicit in the calculation of Wk. To calculate kk (and thus Wk) on each iteration of the algo-

rithm, we use the corresponding values gP
id;k obtained from the modal split of the previous iteration. To assure that the capac-

ity constraint is satisfied, we assign a value of 1 to Wk, whenever kk
rklk

P 1.
6.1. Numerical experiments

In our experiments, we sequentially incorporate park-and-ride facilities (P&Rf) in specific locations of our network by the
following rule: we first run a free-of-parking instance of our model as a benchmark case. Next, for each centroid we run an
instance of the model with the centroid being the only available P&Rf location. From this set of runs, we select a single P&Rf
location, considering the instance that provided the highest occupancy of the P&Rf among all instances in the set. Then, fixing
the previously selected location for the P&Rf, we perform a new set of runs of the model, one instance for each remaining
centroid. In each instance, there are two available P&Rf locations: the centroid under scrutiny and the previously fixed cen-
troid. We select a second P&Rf considering the instance that provided the highest occupancy of the two P&Rfs. We continue
with this procedure of selection of P&Rf until five locations for P&Rfs are selected. This is one possible criterion, chosen arbi-
trarily to explore how our model responds to the addition of P%R facilities.

The results of our experiments are displayed in Table 5. We show the selected location of the P&Rf on each step of our
experiment along with the modal share (car, bus and combined modes) and the occupancy of each of the P&Rfs for the equi-
libria obtained by the Integrated EquilibriumModel with combined modes for Iquique. The modal share in equilibrium takes
into account only the trips of users with car availability.

The modal share in equilibrium obtained for the last step of our experiment, considering users with car availability only,
shows that around 63% of the trips are made by car and 31% by bus as pure modes. We observe that the combined mode
attracts approximately 6% of the trips starting at 5.1% when only one P&Rf is available, with decreasing increments at each
P&Rf addition. The share of the combined mode stabilizes at the addition of the third P&Rf. The increment on the combined
mode share comes from a reduction of car participation and not from trips that utilize only bus.

In Fig. 11 we illustrate the percentage of trips that use P&R per OD pair when three P&Rf are opened (namely at nodes 10,
15 and 34). Nodes between 52 and 69 represent the isolated suburb of Alto Hospicio (AH), while nodes between 1 and 20
roughly represent downtown Iquique (refer to Fig. 10).

We observe that internal trips in AH (upper right corner of Fig. 11) do not use the combined mode, which is very reason-
able since there are no P&Rf located inside AH and at the same time these are not incorporated in our exercise probably
because the attraction of trips in the modeled period is very small as it corresponds mostly to a residential area. The upper
left portion of the matrix shows that there is relatively high use of P&R in trips that start at AH (52–69) with downtown des-
tination (6–14). The combined mode share for these trips (the only mode that occupies P&R) is at least 6% and in most of
them is even greater than 8%. In the lower and left strips of the matrix we see that trips with downtown origin or destination
have, in general, higher usage of P&R. Finally, some trips from AH with destination in the middle part of the city appear to
have relatively high usage of P&R.

In Table 6 we show the variation of expected travel time in the combined mode for selected OD pairs (refer to Fig. 10). The
node with the highest generation of trips is 28 while the node with highest attraction of trips is 9, thus we include the OD
pair ð28;9Þ. OD pairs ð60;6Þ and ð47;6Þ are representatives of AH-downtown and south-downtown trips (respectively) with
relatively high usage of P&R (more than 8%). Finally, we include two OD pairs: the OD pair ð1;38Þ because among the OD
pairs going from north to south, it presents a high share of combined mode; and the pair ð7;52Þ whose origin is near the
shoreline, its destination is in AH and the transfer is conducted at intermediate points.

We see that the addition of the first three P&Rfs reduces considerably the travel time on four out the five selected OD
pairs. For the outlier OD pair ð7;52Þ travel time does not significantly change since this pair makes almost exclusive use
of transfer node 15 (see Table 7 below). Small variations on travel time after the addition of the fourth and fifth transfer
nodes are not significant (less than one minute). However, we may point out that the increase in expected travel time for
the pair ð28;9Þ after the addition of transfer node 13 may be due to congestion provoked by the attraction of cars to this
node, which is in between nodes 10 and 15, which are used as transfer nodes in this OD pair (see Table 7 below). The same
Table 5
Modal split and park occupancy with sequential selection of P&R facilities.

P&Rfs Modal split (%) P&R occupancy (%)

Car Bus Combined

£ 66.9 33.1 – –
15 63.5 31.5 5.1 94.9
15–34 63.2 31.3 5.6 84.8–33.4
15–34–10 62.8 31.1 6.1 45.9–31.5–51.5
15–34–10–13 62.7 31.1 6.2 32.1–30.0–40.1–30.2
15–34–10–13–37 62.6 31.0 6.3 31.5–19.4–39.9–29.6–14.1
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Table 6
Expected travel time using combined mode by OD pair.

P&Rfs OD pair

ð28;9Þ ð60;6Þ ð47;6Þ ð1;38Þ ð7;52Þ
15 26.6 35.8 44.6 39.1 33.3
15–34 25.8 34.9 43.6 20.6 32.6
15–34–10 18.3 19.4 25.9 20.6 33.0
15–34–10–13 19.0 19.4 25.8 20.6 33.2
15–34–10–13–37 19.0 19.4 25.8 21.3 33.2

Table 7
Level of service by OD pair.

Orig. Dest. With 3 P&Rfs (15–34–10)

sCid sBid P&R share (%) Parking node k sCik sBkd Wk Combined/car travel time ratio

28 3 13.6 59.3 7.0 15 (59%) 7.4 19.8 0.17 2.0
10 (41%) 11.3 16.3 0.18 –

28 9 11.5 38.0 7.1 15 (11%) 7.4 17.0 0.17 –
10 (89%) 11.3 6.0 0.18 1.5

60 9 16.7 76.3 8.5 15 (11%) 7.4 17.0 0.17 –
10 (89%) 11.3 6.0 0.18 1

60 6 16.3 89.6 9.2 10 (99%) 15.8 3.3 0.18 1.2
60 14 15.3 80.0 9.0 15 (99%) 11.3 7.4 0.17 1.2
60 38 16.6 87.5 8.6 34 (99%) 14.6 7.9 0.15 1.4
40 6 17.5 72.0 8.6 10 (99%) 17.1 3.3 0.18 1.2
47 6 22.8 72.8 8.4 10 (99%) 22.4 3.3 0.18 1.1
1 38 14.4 75.8 8.4 34 (99%) 12.5 7.9 0.15 1.4
7 52 21.2 67.4 7.6 15 (82%) 5.4 26.5 0.17 1.5

10 (18%) 1.9 35.3 0.18 –
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phenomenon may be occurring when adding a P&Rf at node 37, which slightly increases travel time in the OD pair ð1;38Þ
(refer to Fig. 10).

In Table 7 we report the level of service in terms of total expected travel time on each mode of selected OD pairs (refer to
Fig. 10). In addition to the OD pairs displayed in Table 6, we include the OD pair with the highest demand, which is ð28;3Þ.
Then we include three more representative OD pairs with origin in AH and downtown destination with relatively high usage
of P&R (more than 8%). Similarly, we include one extra representative OD pair with origin in the southern part of the city and
destination located at downtown, with high usage of P&R. We list the expected travel time on each mode, separating the
travel time by car, by bus, and by using the combined mode, along with the occupied P&Rf.

We observe that in all the listed OD pairs, the best (in terms of travel time) P&R option is worse than the car option but far
better than the pure bus mode. In half of the listed OD pairs, the expected travel time on the combined mode is comparable
with the pure car mode travel time (less or equal to 1.2 times). From Fig. 10 we see that in these OD pairs, the P&R facilities
are located fairly close to the destination -relative to the length of the trip-, which implies that the transit mode is mainly
used as a local feeder service. In the remaining OD pairs, with the exception of ð28;3Þ, travel time in the combined mode is
less or equal to 1.5 times the travel time in the pure car mode. In general, in all trips where the transfer node is near the
Fig. 12. Total travel time variation of each mode.
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destination node, travel time by car in the combined mode is strictly less than travel time to destination by car, therefore,
relative performance of combined mode strongly depends on transit level of service provided. This last observation is high-
lighted in the OD pair ð28;3Þwhere it takes 20 min in equilibrium to get from the transfer node 15 to the destination node 3.
The behavior of travelers using P&R in the OD pair ð7;52Þ is inverted with respect to the previously discussed cases, since car
in the combined mode is used as an access to transit service leaving the larger portion of the trip conducted by bus.

Finally, in Fig. 12 we show how the total expected travel time of the system varies with the addition of each new P&R
facility. In this figure we graph the variation of total travel time with respect to the no P&R facilities case, in total and sep-
arated by mode. We see that the addition of the first three P&R facilities reduces total travel time on the transit mode in
about 2.2% and is further reduced to 2.3%; while total travel time by car is reduced on 1.4% by the addition of the first three
facilities and up to a reduction of 1.5%. Total reduction on travel time in this experiment is about 2% of total travel time in the
system without P&R facilities.
7. Conclusions

In this paper, we presented an integrated traffic-transit stochastic equilibrium model based on state-of-the-art equilib-
rium models for transit and traffic, including STE (Cortés et al., 2013) and MTE (Baillon and Cominetti, 2008). The model
explicitly includes the uncertainty that drivers and passengers experience while they are choosing routes (strategies) until
completing their trip, recognizing that within the population, a lack of knowledge about conditions and physical character-
istics of the networks cause different perceptions among people. This model also allows us to create an Integrated Stochastic
Equilibrium scheme that captures the interaction between the two modes, recognizing that both cars and buses may share
the same road infrastructure in many urban areas; the model is therefore, able to incorporate the phenomenon of traffic and
passenger congestion. Moreover, the integrated equilibrium model reflects the interaction at the demand and modal share
levels because part of the population has the option to choose between the two modes or even combine them in a park-and-
ride scheme. This integrated scheme apart from considering stochasticity, incorporates, and combination of modes.

We have shown how to apply the stochastic transit equilibrium model to real networks while considering their specific
characteristics. The major issue concerns the equilibrium conditions of Definition 1 for the cases of nodes that are adjacent to
arcs that have infinite frequency. A second issue is how to construct an extended network that results from the provided
operation pattern of the transit system, incorporating stop nodes, alighting and boarding arcs and access arcs that connect
centroids to bus stop nodes.

We provided an algorithm that can be used to obtain the Integrated Stochastic Equilibrium (for both pure and combined
modes), and we presented numerical experiments on real networks. In these experiments, we observed, as expected, that an
increase in stochasticity causes greater dispersion of equilibrium flows and an increase in the expected travel time. The
implementation on a large network, including combined modes, obtains equilibrium flows in a fairly reasonable execution
time. In terms of policy issues and implications, we strongly believe that even for strategic-level modeling, the stochastic
aspect of human behavior when making daily travel decisions in real urban scenarios plays a fundamental role and should
be considered when policy makers decide to invest in various transport projects and plans. The development of an efficient
tool for modeling all of these aspects under an equilibrium scheme considering public and private transport in an integrated
scheme can then make a major difference in such important decisions.

The general algorithm proposed to solve for the Integrated Stochastic Equilibrium consolidates the formulations and
methods of each model individually. One of the major advantages in this sense is that partial equilibria are solved for simul-
taneously rather than sequentially, which results in an important computational time reduction and consistency in the final
results.

Note that although we propose a hierarchical logit modal share formulation between the two systems, the Integrated
Stochastic Equilibrium model is sufficiently flexible to integrate other modal share proposals without losing the structural
elements of the final joint stochastic equilibria. This issue could be explored as a next step of this research together with
other research topics such as the appropriate formulation of the conditional probability of boarding. Other issues to analyze
in the future are related to convergence and to the uniqueness of solutions for the integrated approach built from results
already proven for the separate cases.

In algorithmic terms, the increase in convergence speed to an equilibrium using methods different from MSA is another
topic that requires further study. For example, applying MSWA or optimizing the step value by other numerical methods
based on linear search or Newton’s method, may result in a faster execution of the algorithm.

Practical applications of our model include the implementation in a real and updated network of the city of Santiago-Chile
for planning and policy purposes (including, for instance, optimal location of P&R facilities). This implies a great effort in cod-
ing and calibration issues. In the future, we expect to have a planning tool that could be used by policy makers, not only in
Santiago-Chile but also in other potential cities abroad, to make proper transport planning decisions for future investments.
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