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Abstract We study chance-constrained problems in which the constraints involve the
probability of a rare event.We discuss the relevance of such problems and show that the
existing sampling-based algorithms cannot be applied directly in this case, since they
require an impractical number of samples to yield reasonable solutions. We argue that
importance sampling (IS) techniques, combined with a Sample Average Approxima-
tion (SAA) approach, can be effectively used in such situations, provided that variance
can be reduced uniformly with respect to the decision variables. We give sufficient
conditions to obtain such uniform variance reduction, and prove asymptotic conver-
gence of the combined SAA-IS approach. As it often happens with IS techniques, the
practical performance of the proposed approach relies on exploiting the structure of
the problem under study; in our case, we work with a telecommunications problem
with Bernoulli input distributions, and show how variance can be reduced uniformly
over a suitable approximation of the feasibility set by choosing proper parameters for
the IS distributions. Although some of the results are specific to this problem, we are
able to draw general insights that can be useful for other classes of problems. We
present numerical results to illustrate our findings.
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1 Introduction

Chance-constrained programmingwasfirst introduced in [12] and has been extensively
studied since then. Inmany situations a decisionmakerwants a constraint to be satisfied
with some pre-specified probability, that is, violation may occur for some realizations
that as a whole have small probability. Applications include finance [6,16,18], energy
[2], water pollution management [27], mining [11] and telecommunications [26,44].
For a theoretical background we refer to Prékopa [34] and Chapter 4 of [42].

Although chance-constrainedprogramming is a veryflexiblemodeling tool to incor-
porate uncertainty into optimization problems, the resulting problems are usually hard
to solve. The requirement of having to satisfy a certain constraint with high probabil-
ity involves computing a multidimensional integration, which can only be performed
exactly for certain distributions. In addition, the set of feasible solutions satisfying the
chance constraint is usually non convex and therefore unsuitable for most optimization
algorithms. Even the evaluation of feasibility for a given candidate solution cannot be
done explicitly and one has to employ Monte Carlo simulation to check it.

Different approaches have been proposed in the recent years to deal with chance-
constrained problems. Among these approaches, we mention the concept of efficient
points [5,15], the Bernstein approximation [31], combinatorial patterns [25] and data-
driven optimization [22]. Another common technique is a sampling-based method
known as Sample Average Approximation (SAA). SAA generates a sample from
the original distribution of the problem and creates an approximate problem with
new sampled constraints that replace the original chance constraint. The resulting
problem is then either solved as an integer program, or approximated further by a
convex program. Such an approach has been well studied in the literature; a series
of theoretical results ensure that the optimal value and the set of optimal solutions of
those approximate problems converge to their true counterparts under mild conditions
[28,32]. Furthermore, estimates on the sample size that is sufficiently large to achieve a
desired precision are also provided. It should be noted that the convergence of the SAA
approach can also be viewed from the perspective of earlier works on stability theory,
which studies more generally the effect of perturbations of the underlying probability
measure on the optimal value and optimal solutions of the problem [19,37]; in the
context of SAA, the perturbation corresponds to replacing the original distribution of
the random variables with the empirical distribution corresponding to a given sample.

The most important parameter to be chosen in SAA is the number of samples, or
scenarios, that will be drawn from the original distribution. A series of papers [7–
9,28] study SAA (sometimes called “scenario approach”) and find a lower bound on
the number of samples such that the solution of the sampled problem is feasible to
the original chance-constrained problem with high probability. The theoretical bound
is often too conservative in practice, but constraint discarding schemes can be used
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to improve the quality of the obtained solutions [33]. In most applications of chance
constraints the probability of violation should not exceed 10, 5 or 1%. The formulas
for the sample size in the literature are usually of the order of one over the probability
of violation, so the resulting problems are of manageable size.

In this paper we consider chance-constrained optimization problems with rare
events, that is, problems in which the violation probability is very small, e.g, 10−6. In
this case the theoretical guidelines would lead to extremely large problems that cannot
be solved due to computational limitations. Working with such small values raises
two important concerns. The first is how relevant those problems are. For example,
in the aviation industry the maximum tolerated probability of a catastrophic event per
flight hour is 10−9 [43]; in structural engineering the maximum tolerated probability
of failures is of order 10−4 [17]. Many other such examples exist.

The second concern is from an algorithmic perspective: if the violation is so small,
would not it be better to simply forbid violation, assigning the value zero to the
probability of violation and solving a “robustified” the problem?Wewill show through
an example that the answer is no. Significantly different solutions may arise when
some violation is allowed, even if the value is as small as 10−6. This is expected for
distributions that have a relatively long tail.

New techniques are needed to tackle chance-constrained problems in the presence
of rare events. We propose an integration of SAA with importance sampling (IS),
a technique widely used in simulation to estimate probabilities of rare events that
dates back to Kahn and Harris [23] and Rosenbluth and Rosenbluth [38]. Importance
sampling is still an active research topic that generates great interest among researchers;
see, for instance, L’Ecuyer et al. [24] and references therein.

In the optimization context the use of importance sampling is scarcer. In [14,21]
importance sampling is used in multi-stage stochastic programming to obtain better
approximations of the value function. In the recent work [45] the authors propose an
importance sampling methodology based on Markov Chain Monte Carlo methods,
combined with Kernel Density Estimation algorithms. They integrate their approach
with the Stochastic Dual Dynamic Programming algorithm for multi-stage stochastic
programming problems. We are not aware of any previous work that uses importance
sampling in chance-constrained programming. The difficulty is that for each decision
variable there might be a different optimal IS estimator. The challenge is to choose an
estimator that is uniformly efficient, that is, that lowers the variance for all solutions
in a set of interest.

In this paper we discuss such issues in detail. Under the assumption that the random
variables in the problem are mutually independent, we define precisely what is meant
by uniform variance reduction and give a sufficient condition to accomplish that goal.
In addition, we extend some of the convergence results for SAA available in the
literature to the case with importance sampling. These results are general in the sense
that they only require mild assumptions on the problem—for instance, they are valid
for problems with individual or joint chance constraints, the feasibility set could be
continuous or discrete, etc.

It should be noted however that these general results, while valid for a large class
of problems, are mostly effective when the structure of the problem under study is
exploited. Thus, in order to obtain further insight into the proposed approach and
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to test its practical performance, we apply our methodology to an optical network
problem in which customers want to communicate with each other at a certain rate. A
central plannerwants tominimize installed capacity subject to having a lowprobability
that the links of the network do not have enough capacity to allow communication
(the so-called blocking probability). We model the possible connections as Bernoulli
random variables and construct IS estimators for the problem also using Bernoulli
distributions, with different parameters. We then discuss how the choice of an IS
distribution that depends on the decision variables of the optimization problem is
instrumental to achieve larger variance reduction,which in turnmeans that the problem
can be solved with much fewer samples. Reducing the number of samples is crucial,
especially in cases in which generating samples can be expensive. We also show how
the resulting problems can be modeled as mixed-integer programs, a non-trivial task
especially when the IS distribution depends on the decision variables.

A key insight obtained from our construction is the need to reduce variance uni-
formly on a suitable outer approximation of the feasibility set—i.e., it is important
to reduce variance at infeasible points so the infeasibility can be detected, but it is
counterproductive to reduce variance at points that are “too far” from the feasibility
set. Another insight is the existence of a trade-off between the amount of variance
reduction and the complexity of the resulting optimization problem, which means that
larger reduction is achieved at the expense of a problem with more variables and more
constraints.

We illustrate our findings with extensive numerical computations for a ring network
topology. The numerical results corroborate our theoretical findings, demonstrating
that when the IS distribution is carefully constructed the problem can be solved with
a small number of samples, even when the probability of violation is very small.

The rest of the paper is organized as follows. In Sect. 2 we introduce the rare-event
chance-constrained problem, discuss IS techniques and introduce a formal definition
for uniform variance reduction that we use throughout the paper. We also present
convergence results showing the asymptotic validity of the approximating formula-
tions. In Sect. 3 we describe in detail the telecommunication problem and present
mixed integer programming formulations for the rare-event chance-constrained prob-
lemwith importance sampling.We construct ISmeasures that ensure uniform variance
reduction over an appropriate set in Sect. 4. Numerical results are presented in Sect. 5
and concluding remarks are discussed in Sect. 6.

2 Chance-constrained programming and SAA

In this paper we consider problems of the form

min
x∈X h(x) s.t. P

{
Gi (x, ξ) ≤ 0

} ≥ 1 − αi , i = 1, . . . , M. (1)

Here X ⊂ R
n , ξ is a random vector defined on an underlying probability space

(Ω,F ,P) with probability distribution supported on a set Ξ ⊂ R
d , αi ∈ (0, 1),

h : R
n �→ R is a real valued function and Gi : R

n × R
d �→ R is a real-valued

function. By choosing M > 1 we allow multiple chance constraints, each one with its
own reliability level αi .
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Problem (1), which we will refer to as the original problem, can be written in the
following equivalent form:

min
x∈X h(x) s.t. pi (x) ≤ αi , i = 1, . . . , M, (2)

where
pi (x) := P{Gi (x, ξ) > 0} = Eξ

[
1{Gi (x,ξ)>0}

]
, (3)

and 1A is the indicator function of the event A, i.e., 1A = 1 if A occurs and 1A = 0
otherwise. In the discussion that follows we will assume that M = 1, and drop the
subscript. Later we will consider the case M > 1.

For a given sample (ξ1, . . . , ξ N ) of size N from the distribution of ξ , a natural
approximation of function p(x) in (3) is

p̂(x) := 1

N

N∑

j=1

1{G(x,ξ j )>0}, (4)

that is, p̂(x) is equal to the proportion of indices j such that G(x, ξ j ) > 0. The
Sample Average Approximation (SAA) problem associated with the generated sample
is defined as

min
x∈X h(x) s.t. p̂(x) ≤ γ. (5)

Following [32], we allow the tolerance levels γ ≥ 0 of the SAA problem and α of
the original problem to be different. A very important result regarding feasibility of
chance-constrained programs was derived in Campi and Garatti [8]. The authors find a
bound on the probability that a solution of the SAA problem with γ = 0 (the so-called
scenario problem) violates the original problem. Using the simpler expression shown
in Campi et al. [10], they prove that if the sample size N satisfies, for a d-dimensional
problem,

N ≥ 2

α

(
ln

1

β
+ d

)
, (6)

then the optimal solution of the SAA problem violates the chance constraint in the
original problem with probability at most β. The result is very powerful because it
does not depend on the distribution of ξ , requiring only convexity of the function G
with respect to x . A similar result is derived in Luedtke and Ahmed [28] for the case
of a general function G but when the feasibility set X is finite.

As mentioned earlier, one of the goals of this paper is to solve chance constrained
problems in which the value of α is very small, say, of order 10−6. Using formula
(6) we see that the resulting sample size would be impractical, of order 106. For this
reason the applicability of (6) is limited in our context. The same comment applies to
the sample size estimates derived in Luedtke and Ahmed [28].

Motivated by those difficulties, we propose the use of IS techniques within the
SAA. In the remainder of this section we formulate the SAA problemwith importance
sampling and show that the modified problem is still consistent.
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2.1 Importance Sampling Techniques

Importance sampling (IS) is awell known simulation technique used to reduce variance
(see, e.g., [4] for a comprehensive discussion). For completeness, we review next the
basic ideas of IS. Let μ denote the measure in R

d induced by the random vector ξ ,
i.e. μ(A) = P(ξ ∈ A). We want to estimate p(x) for all x ∈ X . Now let us consider
ξ̂ a new random vector with induced measure ν, which we will call the IS measure,
such that μ is absolutely continuous with respect to ν, i.e., μ(A) = 0 if ν(A) = 0. Let
ξ̂1, . . . ξ̂ N be i.i.d. copies of ξ̂ . Define

p̂IS(x) := 1

N

N∑

j=1

1{G
(
x,ξ̂ j

)
>0}L(ξ̂ j ), (7)

where L(·) is the likelihood ratio L(·) := dμ
dν

(·). The function L is the Radon-
Nikodym derivative of μ with respect to ν, i.e., L is a function R

d �→ R such that
μ(A) = ∫

A L(s)dν(s) for any Borel set A ⊂ R
d . Note that for any measurable

function f : Rd �→ R we have that
∫
Rd f (s) dμ(s) = ∫

Rd f (s)L(s) dν(s), that is,

Eξ [ f (ξ)] = E
ξ̂

[
f (ξ̂ )L(ξ̂ )

]
. (8)

In particular, by taking f ≡ 1 we have E
ξ̂
[L(ξ̂ )] = 1. In the case where both ξ

and ξ̂ have discrete support, L is the ratio between the respective probabilities mass
functions, whereas in the case where both ξ and ξ̂ have probability densities then L
is the ratio between the respective probability densities. For each x ∈ X , we have that
p̂IS(x) is an unbiased estimator of p(x), since

E
ξ̂

[
p̂IS(x)

]
= 1

N

N∑

j=1

E
ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ )

]
= 1

N

N∑

j=1

Eξ

[
1{G(x,ξ)>0}

] = p(x).

Notice that the variance of the standard estimator p̂(x) in (4) is given by

NVar( p̂(x)) = p(x) − p(x)2 = Eξ

[
1{G(x,ξ)>0}

]− p(x)2,

whereas the variance of the new estimator p̂IS(x) is given by

NVar( p̂IS(x)) = E
ξ̂

[
12

{G(x,ξ̂ )>0}L(ξ̂ )2
]

− p(x)2 = Eξ

[
1{G(x,ξ)>0}L(ξ)

]− p(x)2,

where the second equality follows from (8). Thus, we see that by choosing the IS
measure ν in such a way that the event 1{G(x,ξ)>0} becomes more likely under that
distribution, the variance of the new estimator will be smaller. In fact, an optimal
choice for ν is to put all of its weight on the set {ξ : G(x, ξ) > 0}; however, such a
choice is impractical as it requires knowledge of the original probability p(x).
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There is an extensive literature in simulation on how to chose a “good” IS measure
ν, especially in the context of estimation of rare-event probabilities; see, for instance,
L’Ecuyer et al. [24] for a recent account. Another approach is to restrict the choice
of IS distributions to some parametric family, say, indexed by θ , and then to find
the “best” (in some sense) parameter θ∗. For example, θ∗ can be the parameter that
minimizes the variance of the IS estimator subject to some restrictions, or one that
minimizes some kind of distance to the best (but idealized) distribution; see Rubinstein
and Shapiro [40] and Rubinstein [39] for discussions. Many other approaches, which
typically work by exploiting somehow the structure of the problem, exist as well. In the
telecommunications problem described in Sect. 3 we use a parametric distribution but
also exploit the structure of the problem in order to obtain further variance reduction.

2.2 Enhanced IS estimators

The IS estimators discussed in Sect. 2.1 depend only on the distribution of the random
variables of the problem. We move now one step further and allow the IS estimator
to depend on the decision variable x as well. As we shall see later, this generalization
will allow us to obtain better estimators in the cases where the performance function
G at a given x is affected only by a subset Ix of the random variables of the problem.
Roughly speaking, the reason for such an improvement is that in those situations
we can apply the IS distribution calculated at x only to the subset Ix rather than to
all random variables, thus reducing the noise. Before we proceed, we introduce an
assumption and some notation. Let I := {1, . . . , d} (recall that d is the dimension
of ξ ).

Assumption 1 The original probability measure μ and the IS probability measure ν

are product measures in R
d , i.e., that all components of ξ and ξ̂ are independent.

Definition 1 Given a subset J ⊆ I and x ∈ X , we say that the function G(x, ·) is
J -determined if there is a function GJ : Rn × R

|J | �→ R such that

G (x, (zi )i∈I ) = GJ
(
x, (z j ) j∈J

)

for anyvector z ∈ R
d . Inwords, only the coordinates z j for j ∈ J matter for calculation

of G(x, z).

Next, let Ix be a set-function that chooses a subset of I for each x ∈ X . Given
x ∈ X , there exists a Borel measurable function φx on R

|Ix | such that

φx
(
(zi )i∈Ix

) = E
ξ̂

[
L(ξ̂ ) | (ξ̂i )i∈Ix = (zi )i∈Ix

]
;

see, for instance [13]. Define now a function Lx : Rd �→ R in such a way that

Lx (ξ̂ ) = φx

(
(ξ̂i )i∈Ix

)
= E

ξ̂

[
L(ξ̂ ) | (ξ̂i )i∈Ix

]
. (9)
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By construction, Lx is Ix -determined. The following lemma shows that when the func-
tion G(x, ·) is Ix -determined, the IS estimator of p(x) constructed with the likelihood
function Lx is unbiased and its variance is at most the same as the variance of the
estimator p̂IS(x) defined in (7).

Lemma 1 Suppose that the set-function Ix defined above is such that G(x, ·) is Ix -
determined for each x ∈ X. Given an i.i.d. sample (ξ̂1, . . . , ξ̂ N ) from the distribution
of ξ̂ , let

p̂IS0(x) := 1

N

N∑

j=1

1{G(x,ξ̂ j )>0}Lx (ξ̂
j ). (10)

Then p̂IS0(x) is also an unbiased estimator of p(x). Moreover,

Var( p̂IS0(x)) = Var( p̂IS(x)) − 1

N
E

ξ̂

[
Var

(
1{G(x,ξ̂ )>0} | (ξ̂i )i∈Ix

)]
. (11)

Proof See Appendix 2. ��
It is important to observe that p̂IS(x) corresponds to a particular case of p̂IS0(x) defined
in Lemma 1, obtained by choosing Ix = I for all x .

2.3 Uniform variance reduction

As mentioned earlier, a major challenge that arises when using IS in the context of
solving chance-constrained problems with SAA is that we need to use the same IS
measure to perform the importance sampling for all x ∈ X . For certain IS measures,
variance canbe reduced for somepoint in X but increase for others. For a subsetY ⊆ X ,
we propose the definition of an (ε,Y )-Uniform variance reduction to capture the
fact that we need to introduce a new estimator that reduces the variance uniformly
over the region Y .

Definition 2 Let p̂(x) be the standard Monte Carlo estimator of p(x) defined in (4),
and let p̂′(x) be another estimator of the same quantity. Given ε ∈ [0, 1], we say that
p̂′(·) has (ε,Y )-Uniform Variance Reduction with respect to p̂(·) if for each x ∈ Y
we have

Var
(
p̂′(x)

) ≤ εVar( p̂(x)).

The following proposition gives a sufficient condition to obtain estimators with
(ε, Y )-uniform variance reduction. Before that, we provide a definition.

Definition 3 Let ε be such that p(x) ≤ ε for all x ∈ Y , and consider the IS esti-
mator p̂IS0(x) defined in (10). We say that p̂IS0(·) is an (ε,Y )-Uniformly Bounded IS
Estimator of p(·) if for all x ∈ Y we have

1{G(x,ξ̂ )>0}Lx (ξ̂ ) ≤ ε w.p.1. (12)

Proposition 1 If p̂IS0(·) is an (ε,Y )-uniformly bounded IS estimator of p(·) with
ε ≤ 1 then it has (ε,Y )-uniform variance reduction with respect to p̂(·).
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Proof For each x ∈ Y , we have

NVar( p̂IS0(x)) = E
ξ̂

[
1{G(x,ξ̂ )>0}Lx (ξ̂ )2

]
−
(
E

ξ̂

[
1{G(x,ξ̂ )>0}Lx (ξ̂ )

])2

= Eξ

[
1{G(x,ξ)>0}Lx (ξ)

]− p(x)2, (13)

where the second equality follows from (8). Moreover, since p̂IS0(·) is an (ε,Y )-
uniformly bounded IS estimator of p(·), we have that (12) holds with ε ≤ 1 and hence
absolute continuity of μ with respect to ν implies that 1{G(x,ξ)>0}Lx (ξ) ≤ ε w.p.1,
which in turn implies that

1{G(x,ξ)>0}Lx (ξ) ≤ ε1{G(x,ξ)>0} w.p.1.

It follows that

NVar( p̂IS0(x)) = Eξ

[
1{G(x,ξ)>0}Lx (ξ)

]− p(x)2

≤ Eξ

[
1{G(x,ξ)>0}ε

]− p(x)2 = εp(x) − p(x)2

≤ ε(p(x) − p(x)2) = NεVar( p̂(x)),

which finishes the proof. ��

2.4 Consistency

When using sampling-based methods for stochastic optimization such as SAA, it is
important to use consistent estimators because they provide theoretical guarantees
that the optimal value and solution set of the approximate problem converge to their
deterministic counterparts (see, e.g., [41] and [20] for a general discussion of that
issue). Here, we extend the consistency results of Pagnoncelli et al. [32] derived for
chance-constrained problems to the setting of SAA with importance sampling, and
show that consistency is present if the significance levels of the SAA and true problems
are the same.

The first step is to formulate an importance sampling version of the SAA problem
(5), which we will refer to as SAA-IS. Following the notation established in the
previous section, we define SAA-IS problem as

min
x∈X h(x) s.t. p̂IS(x) ≤ γ, (14)

where p̂IS(x) is the IS estimator defined in (7). Note that problem (14) is not stated
for the more general estimator p̂IS0(x) defined in (10), i.e., we use Ix = I for all x ;
we will comment on that shortly.

Before showing the consistency results for problem (14) we need some definitions.
Recall that a sequence fk(·) of extended real valued functions is said to epiconverge

to a function f (·), written fk
e→ f , if for any point x the following two conditions
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hold: (i) for any sequence xk converging to x one has

lim inf
k→∞ fk(xk) ≥ f (x), (15)

(ii) there exists a sequence xk converging to x such that

lim sup
k→∞

fk(xk) ≤ f (x). (16)

We discuss now the consistency results. Note initially that by the strong law of large
numbers (SLLN) (together with Lemma 1) we have that for any x , p̂IS(x) converges
w.p.1 to p(x). Proposition 2 below shows that, under mild assumptions, we actually
have epiconvergence.

Proposition 2 Let G(x, ξ̂ ) be a Carathéodory function (i.e., continuous in x and
measurable in ξ̂ ). Then the functions p(·) and p̂IS(·) are lower semicontinuous, and
p̂IS

e→ p w.p.1.

Proof To simplify the notation, define the functions φ(x, ξ̂ ) := 1{G(x,ξ̂ )>0} and

ψ(x, ξ̂ ) := 1{G(x,ξ̂ )>0}L(ξ̂ ). In [32, Proposition 2.1] it was shown that function φ

is random lower semicontinuous. Combining this result with Corollary 14.46 in [36]
we see that ψ is also random lower semicontinuous.1 The lower semicontinuity of p
was already established in [32]. The lower semicontinuity of p̂IS follows from Fatou’s
lemma, since for every x̄ ∈ R

n we have

lim inf
x→x̄

p̂IS(x) = lim inf
x→x̄

1

N

N∑

j=1

ψ
(
x, ξ̂ j )

≥ 1

N

N∑

j=1

lim inf
x→x̄

ψ
(
x, ξ̂ j ) ≥ 1

N

N∑

j=1

ψ(x̄, ξ̂ j ) = p̂IS(x̄).

The epiconvergence p̂IS
e→ p w.p.1 is then direct from [3, Theorem 2.3]. ��

It is important to observe the role of the likelihood function L(ξ) in the above
result. As mentioned earlier, the result does not apply to the more general likelihood
function Lx (ξ̂ ), the reason being that the dependence of L on x may destroy the lower
semicontinuity required to show the epiconvergence in Proposition 2. By Proposition
2.2 in [32], we have that for γ = α, undermild regularity conditions, ϑ̂ and Γ̂ converge
w.p.1 to their counterparts of the true problem.

The above discussion shows that consistency of optimal values and optimal solu-
tions is preserved when using appropriate IS estimators. Note however that these
results are stated with a continuous feasibility set X in mind. On the other hand, when
X is finite there is no need to require the epiconvergence result in Proposition 2, since

1 Random lower semicontinuous functions are called normal integrands in [36].
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finiteness of X automatically implies uniform convergence of p̂IS to p. In fact, in that
case convergence holds for the more general estimator p̂IS0 , since the dependence of
Lx on x does not preclude uniform convergence when X is finite. It is also worth
noticing that the above convergence results extend readily to the case of multiple (but
finitely many) chance constraints.

In the next section we describe a rare-event chance-constrained optimization model
for a problem in telecommunications, which we solve using an SAA approach com-
bined with importance sampling as laid out in this section. As we shall see, in order
to make an effective use of IS techniques it is important to exploit the structure of
the problem, in several ways: first, to define a proper IS distribution—in this case,
a distribution in the same family as the original one but with different parameters;
second, to make that IS distribution dependent on the decision variables x in order to
reduce the noise, as discussed earlier; and third, to find a proper set Y on which we
can ensure uniform variance reduction. The choice of Y is very important—it should
certainly include solutions that are good candidates to be optimal, but if Y is too large
it will be difficult to ensure a large reduction of variance uniformly on Y . On the
other hand, if Y is too small the SAA problem may yield infeasible solutions since
some points that violate the chance constraints may be feasible for the SAA problem.
Finding a proper set Y is of course problem-dependent; nevertheless, we are able to
draw some insights from our specific application, and demonstrate the effectiveness
of the proposed approach with numerical results.

3 Joint routing and dimensioning problem for optical networks

We present now a problem arising in optical networks that illustrates the IS techniques
discussed in Sect. 2.1.We start by describing the problem and its relevance and thenwe
write explicit mixed integer programming formulations that approximate the problem
using different IS estimators.

3.1 Problem description

Nowadays, the only technology that provides the high transmission speeds required
in telecommunication are optical networks with Wavelength Division Multiplexing
(WDM) technology. WDM allows transmission of multiple information channels
(wavelengths) using a unique optical fiber. As a result, optical WDM networks are
widely deployed as transport networks around the globe.

In an end-to-end dynamic optical WDM network, every time a connection request
(i.e. a request to establish an optical channel from the source to the destination node) is
generated, the resource allocation algorithm must find a route and an available optical
channel in each link of that route. We assume a network equipped with wavelength
conversion capability, that is, the resource allocation algorithm must only find a route
with at least one optical channel available in each link of this route, regardless the
wavelength of the channel. The algorithm in charge of finding a route is known as a
routing algorithm.
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When, in an end-to-end network, a connection is requested but there is not enough
capacity in some link of the route assigned to the origin-destination pair, a blockage
occurs. The performance of a routing algorithm in dynamic networks is typically mea-
sured in terms of the blocking probability. Routing algorithm A is better than routing
algorithm B if it obtains a lower value of blocking probability. The blocking proba-
bility of a routing algorithm is in turn very much affected by the dimensioning of the
network, that is, the number of wavelengths or capacity allocated to each link. If all
network links are equipped with as many wavelengths as required in the worst case,
then all routing algorithms would obtain zero blocking probability. Since wavelengths
are costly resources, network operators aim at equipping the network with the mini-
mum number of wavelengths per link such that the blocking obtained by the routing
algorithms is below a given threshold. To do so, the typical approach is to first select
a routing algorithm and then dimension the network in order to guarantee a given
blocking probability according to the routes determined by the routing algorithm.
Since routing affects dimensioning, such sequential approach tends to be suboptimal.
To circumvent that problem, we will work with a model that solve both problems in a
joint fashion.

We consider a network topology represented by a directed graphG = (V, A)where
V is the set of network vertices and A is the set of unidirectional arcs or links. The link
capacity is measured in terms of number of wavelengths for link a ∈ A and is denoted
by wa . Let C ⊂ V × V be the set of connections that should be routed through the
network. To facilitate the notation, we shall identify each connection with a number
c = 1, . . . ,C , where C = |C|. Each connection is associated to a source sc and
destination tc nodes. We assume the traffic generated by source node sc to destination
node tc is governed by an ON-OFF model [1]. For this traffic model, the source is
assumed to transmit at the maximum bitrate and, therefore, in the long run the traffic
load ρc corresponds to the fraction of time that connection c was transmitting data
through the network. If the traffic load ρc is the same for every connection c we say
that the traffic load is homogeneous, otherwise it is heterogeneous.

For source node sc,wemodel theON-OFFprocess as independentBernoulli random
variables ξ = (ξc)c=1,...,C , where ξc = 1 means connection c is in the ON state and
thus the probability that such connection is requested is equal to ρc. Hence, the number
of requested connections (referred to as active connections from now on) using a given
link a is also a random variable. In this context, the blocking probability of link a is the
probability that the number of active connections exceeds its capacitywa . These are the
probabilities that we wish to bound. Note that in the telecommunications community
different blocking probabilities are studied. For example, some models require that
the “global” probability that any arc gets blocked be bounded. Other models require
that the blocking probability of a connection (that is, the probability that any arc in the
route assigned to that connection gets blocked) be bounded. Nevertheless, bounding
the blocking probability of a link is still the most studied case, and the one that we
will use for illustrative purposes (see [35, Section 10.4] for example).

Let α be the maximum blocking probability acceptable at every link. The Joint
Routing and Dimensioning (JRD) problem of an optical network consists in finding
routes rc for each connection c = 1, . . . ,C and capacities wa for each arc a ∈ A such
that the minimum number of wavelengths is used. A common framework to model
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these kind of problems in telecommunications is by using multicommodity network
flow models [30]. The chance-constrained JRD optimization problem can be stated as

(CC-JRD) min
∑

a∈A

wa

N yc,· = dc ∀c = 1, . . . ,C, (17)

P

(
C∑

c=1

ξc yc,a ≤ wa

)

≥ 1 − α ∀a ∈ A, (18)

wa ∈ N, yc,a ∈ {0, 1} ∀a ∈ A, ∀c = 1, . . . ,C. (19)

The integer variable wa represents the capacity of arc a, while the binary variable
yc,a takes value 1 if connection c is routed through arc a, and 0 otherwise. Equation
(17) is an abbreviated form of the flow constraints to route each connection c from sc
to tc. More specifically, we have

∑

a∈δ+(v)

yc,a −
∑

a∈δ−(v)

yc,a =

⎧
⎪⎨

⎪⎩

1 v = sc,

−1 v = tc,

0 otherwise,

∀v ∈ V

where δ+(v) and δ−(v) are respectively the set of arcs that start in node v and the
set of arcs that end in node v. Finally, chance constraints (18) indicate that capacity
constraints should be satisfied with probability at least 1 − α.

For the homogeneous case with traffic load ρ and for a fixed link a, the random
variable

∑C
c=1 ξc yc,a follows a binomial distribution with parameters

∑C
c=1 yc,a and

ρ. For a given value of
∑C

c=1 yc,a , the minimum value of wa such that constraint
(18) is satisfied can be easily computed. Since the optimal value of wa is a discrete
step-increasing function of

∑C
c=1 yc,a , problem (CC-JRD) can be reformulated as an

integer program and solved to optimality (see [29,46]). For the heterogeneous case,
however, this argument is no longer valid, since the dimensioning of wa depends not
only on the number of connections routed through link a, but also on which con-
nections are being routed—and enumerating all possibilities is clearly not practical.
Nevertheless, the homogeneous case will serve as a benchmark for our IS approxi-
mations since the optimal solution is known. In the heterogeneous case we rely on
bounds for the optimal value in order to evaluate the quality of the approximations
obtained.

We close this section by emphasizing that, although the probability α is very small,
we cannot simply approximate the chance-constrained problem by setting α = 0, a
strategy that might seem appealing given that it is much easier to solve the problem
when α = 0. As it turns out, an optimal solution in the case of small α can differ
considerably from the optimal solution with α = 0. In fact, note that if α = 0 then the
optimal solution satisfies wa = ∑C

c=1 yc,a , so the objective function of (CC-JRD) is
equal to minimize

∑
a∈A

∑C
c=1 yc,a . Hence, the optimal solutions correspond to route

each connection using its corresponding shortest path. Consider for example the case
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Fig. 1 Example of two routings for the ring of 9 nodes for α = 10−6. In the left case, each arc satisfies∑C
c=1 yc,a = 10, requiring a minimum capacity of 7, and resulting in a objective value of 126. In the right

case, each clockwise (counterclockwise) arc satisfies
∑C

c=1 yc,a = 28 (
∑C

c=1 yc,a = 1) with capacity 12
(1) resulting in a objective value of 117, which is the optimal solution.

of ring topologies with 7 and 9 nodes. In that case, each link has either 6 (in case of 7
nodes) or 10 (in case of 9 nodes) connections routed through, so the optimal objective
values are 84 and 180, respectively. But, if α = 10−6 then a capacity at each link
of 5 (in case of 7 nodes) and 7 (in case of 9 nodes) is enough, resulting in objective
values of 5 ·14 = 70 and 7 ·18 = 126, respectively, which are significant smaller than
the optimal values in the α = 0 case. This example shows that allowing for a small
amount of violation, e.g 10−6, yields substantially different solutions from the 100%
reliable case. More interestingly, none of these solutions are optimal for α = 10−6.
The optimal values for these instances are 68 and 117, respectively, and the optimal
routing differs considerably from the shortest path routing (see Fig. 1). Note that this
behaviour strongly depends on the value of α. In fact, for the case of 9 nodes with
α = 10−5, the shortest path is optimal with a value of 108, but with α = 10−7 the
shortest path routing obtains an objective value of 144, where the optimal routing has
a value of 128.

3.2 Mixed integer programming formulations

Let y denote the vector (yc,a)a∈A, c=1,...,C and w denote the vector (wa)a∈A. We shall
use x to denote the joint vector (y, w), and ξ to denote the random vector (ξc)c=1,...,C .
Let ξ1, . . . , ξ N be an i.i.d sample from the distribution of the random vector ξ . Using
the notation of Sect. 2, we have that the chance constraints of problem (CC-JRD) can
be written as

P
{
Ga(x, ξ) ≤ 0

} ≥ 1 − α, with Ga(x, ξ) =
C∑

c=1

ξc yc,a − wa . (20)

Following Eq. (4), one estimator is

p̂a(x) = 1

N

N∑

s=1

1{Ga(x,ξ s )>0}. (21)
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We are interested in blocking probabilities that are very small, say of order 10−6 ,which
would lead to intractable sample sizes if p̂a(x) were used in an SAA formulation.
In order to construct IS estimators, we choose the IS distribution in a parametric
way as follows: consider independent random variables (ξ̂c)c=1,...,C with Bernoulli
distribution with parameters (ρ̂c)c=1,...,C . The likelihood ratio is

L(ξ̂ ) =
C∏

c=1

(
ρc

ρ̂c

)ξ̂c
(
1 − ρc

1 − ρ̂c

)1−ξ̂c

, (22)

and the IS estimator can be written as follows:

p̂ISa (x) = 1

N

N∑

s=1

1{∑C
c=1 ξ̂ sc yc,a>wa

}L(ξ̂ ). (23)

A third unbiased estimator can be constructed by noting that function Ga defined
in (20) is Ia,y-determined, for Ia,y = {c = 1, . . . ,C : yc,a = 1}. Then, the modified
likelihood ratio defined in (9) can be written as

Ly,a(ξ̂ ) :=
C∏

c=1

(
ρc

ρ̂c

)yc,a ξ̂c (1 − ρc

1 − ρ̂c

)yc,a(1−ξ̂c)

, (24)

and consequently the estimator in (10) becomes

p̂IS0a (x) := 1

N

N∑

s=1

1{∑C
c=1 ξ̂ sc yc,a>wa

}Ly,a(ξ̂ ). (25)

From (13), the variance of this estimator is

Var( p̂IS0a (x)) = 1

N
Eξ

[
1{∑C

c=1 ξ sc yc,a>wa

}Ly,a(ξ)

]
− p(x)2

N

= 1

N
Eξ

[

1{∑C
c=1 ξc yc>w

}
C∏

c=1

(
ρc

ρ̂c

)ξc yc (1 − ρc

1 − ρ̂c

)(1−ξc)yc
]

− p(x)2

N
. (26)

FromLemma 1we have that p̂IS0a (x) is an unbiased estimator of pa(x) and its variance
is less than or equal to the variance of p̂ISa (x) in (23).

In order to use these estimators in the formulation of (CC-JRD), we only need to
replace the chance constraint (18) by

C∑

c=1

ξ̂ sc yc,a ≤ wa + za,sM ∀a ∈ A,∀s = 1, . . . , N , (27)
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N∑

s=1

L(ξ̂ s)za,s ≤ α ∀a ∈ A,

za,s ∈ {0, 1} ∀a ∈ A,∀s = 1, . . . , N . (28)

The variable za,s indicateswhether the capacity constraint on arca is violated in sample
s, which is captured by the big-M constraint (27). Finally, Eq. (28) approximates the
chance constraint (18) as follows: for p̂a we use L(ξ̂ s) ≡ 1, and for p̂ISa we use L(ξ̂ )

as defined in Eq. (22).
The formulation of the problem for the estimator p̂IS0a is more delicate since the

likelihood ratio Ly,a(ξ̂ ) defined in (24) depends nonlinearly on the decision variables.
Nevertheless, we can formulate an equivalent MIP problem for the homogeneous case
(all parameters ρc equal) as follows:

min
∑

a∈A

wa (29)

N yc,· = dc ∀c = 1, . . . ,C (30)
C∑

c=1

ξ̂ sc yc,a ≤ wa + za,sM ∀a ∈ A, ∀s = 1, . . . , N (31)

C∑

c=1

yc,a =
C∑

k=0

kva,k ∀a ∈ A (32)

C∑

k=0

va,k = 1 ∀a ∈ A (33)

La,s ≥
C∑

k=1

Fa(s, k)va,k − (1 − za,s)M ∀a ∈ A, ∀s = 1, . . . , N (34)

N∑

s=1

La,s ≤ αN ∀a ∈ A (35)

wa ∈ N, yc,a ∈ {0, 1}, ∀a ∈ A, ∀c = 1, . . . ,C (36)

La,s ≥ 0, za,s ∈ {0, 1}, va,k ∈ {0, 1} ∀a ∈ A, ∀s = 1, . . . , N (37)

Decision variables y and w, constraint (30) and the objective function (29) are
the same as the ones defined in the original formulation (CC-JRD). Decision vari-
ables z and constraint (31) are as in (27). The binary decision variable va,k is equal
to one if and only if

∑C
c=1 yc,a = k, which is obtained by constraints (32) and

(33). The formulation is such that the continuous decision variable La,s represents
1{∑C

c=1 ξ̂ sc yc,a>wa

}Ly,a(ξ̂
s) for the arc a and sample s. Indeed, the likelihood ratio for

sample s when k connections are routed through a link can be pre-computed as
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Fa(s, k) :=
k∏

i=1

(
ρ

ρ̂

)ξ̂ si
(
1 − ρ

1 − ρ̂

)(1−ξ̂ si )

. (38)

It is important to observe that, since all connections have the same probability and
scenarios are sampled independently for each arc, this value does not depend onwhich
connections are routed through a link, only on the number of such connections. We
can compute (38) using the first k components of the sample s. Constraint (34) ensures
that if k connections are routed through link a (i.e. va,k = 1) and if the corresponding
capacity constraint is violated under sample s (i.e. za,s = 1) then La,s ≥ Fa(s, k).
Together with constraint (35) we have the desired representation.

In the heterogeneous case the likelihood ratio depends on which—and not just how
many—connections are routed through a link a, so the above formulation cannot be
used in that setting. However, it is possible to construct aMIP formulation that approx-
imates the nonlinearity of the likelihood ratio function. We describe that formulation
next.

Recall that the term Ly,a(ξ̂ ) from Eq. (24) can be written as

Ly,a(ξ̂ ) =
C∏

c=1

(
ρc

ρ̂c

)ξ̂ sc yc,a
(
1 − ρc

1 − ρ̂c

)(1−ξ̂ sc )yc,a

=
C∏

c=1

(
ρc

ρ̂c

1 − ρ̂c

1 − ρc

)ξ̂ sc yc,a C∏

c=1

(
1 − ρc

1 − ρ̂c

)yc,a
.

Hence, constraint p̂IS0a (x) ≤ α is equivalent to

1

N

N∑

s=1

(
C∏

c=1

(
ρc

ρ̂c

1 − ρ̂c

1 − ρc

)ξ̂ sc yc,a
)

1{∑C
c=1 ξ̂ sc yc,a>wa

} ≤ α

C∏

c=1

(
1 − ρ̂c

1 − ρc

)yc,a
. (39)

We will show in Sect. 4 that we can build an appropriate important sampling dis-
tribution satisfying ρc

ρ̂c

1−ρ̂c
1−ρc

= eλ∗
x for all c = 1, . . . ,C , where λ∗

x > 0 is the root of
a certain equation (see Theorem 1). Hence, for such IS distribution the left-hand size
of the equation only depends on the number of active connections in sample s (i.e.,∑C

c=1 ξ̂ sc yc,a), but not on which of them are active. However, this is not possible for
the right-hand size of (39), so we need to rely on an approximation of the non-linear

term, replacing
∏C

c=1

(
1−ρ̂c
1−ρc

)yc,a
with Ga

(∑C
c=1 yc,a

)
, where

Ga(k) := max
C0⊆{1,...,C}:|C0|=k

∏

c∈C0

1 − ρ̂c

1 − ρc
. (40)

We argue that the above expression can be computed easily. In fact, by writing ρ̂c as
a function of ρc it is easy to check that such a function is concave and increasing, so
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we have that

1 − ρ̂i

1 − ρi
= eλ∗

x
ρ̂i

ρi
≥ eλ∗

x
ρ̂ j

ρ j
= 1 − ρ̂ j

1 − ρ j

whenever ρi ≥ ρ j . Thus, assuming that ρ1 ≥ ρ2 ≥ · · · ≥ ρC—which can be done
without loss of generality—it follows that

Ga(k) =
k∏

i=1

1 − ρ̂i

1 − ρi
. (41)

Additionally, note that by using this approximation constraint (39) now depends only
on the number of connections routed through arc a (i.e.

∑C
c=1 yc,a) and on the number

of these connections that are active in each sample (i.e.
∑C

c=1 ξ̂ sc yc,a), so we can
formulate a model which is similar to the one constructed for the homogeneous case.
We present this formulation in “Appendix 1”. By construction the proposed scheme
is an outer approximation of constraint (39). Of course, by replacing max with min in
(40) we can easily obtain an inner approximation in a similar fashion.

4 Choosing the importance sampling estimator

In this sectionwe discuss how to choose an IS distribution that ensures (ε, X0)-uniform
variance reduction where X0 is a subset of the set of points x = (y, w) satisfying (17)
and (19), which we will denote by X henceforth. Note that if we have an (ε, X0)-
uniform variance reduction, and we choose a subset X ′

0 ⊂ X0, then we also have
an (ε, X ′

0)-uniform variance reduction. Hence, for X ′
0, we could find an ε′ < ε such

that we have an (ε′, X ′
0)-uniform variance reduction. It follows from this argument

that an uniform reduction over the entire set X may not even be desirable, because
it could lead to a poor bound. Instead, as we shall see shortly, by discarding some
clearly non-optimal points in X , we can considerably improve our uniform variance
reduction.

Since we want to estimate the blocking probability for each arc a in A, we can
choose a different IS distribution for each arc. Nevertheless, as our analysis is the
same for each arc we drop the subscripts a to simplify the notation.

Recall that ξ = (ξc)
C
c=1 is a vector of Bernoulli random variables modeling the

presence or not of each connection c, with E[ξc] = ρc. Throughout this section we
will assume without loss of generality that the connections are numbered in such a
way that the corresponding rates ρc satisfy ρ1 ≥ ρ2 ≥ · · · ≥ ρC . As discussed in
Sect. 3.2, the probability we want to estimate is

p(x) = P

{
C∑

c=1

ycξc > w

}

=
∑

ξ∈{0,1}C
1{∑C

c=1 ycξc>w
}

C∏

c=1

ρ
ycξc
c (1 − ρc)

yc(1−ξc),
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and to do that we will use a product of Bernoulli distributions with parameters (ρ̂c)
C
c=1

as the IS distribution, which results in the estimator p̂IS0(x) defined in (25). The
problem then is to find the optimal value of the parameters (ρ̂c)

C
c=1 such that the

variance of IS estimator is uniformly minimized over an appropriate set X0, that
is, we will look for the smaller ε such that we obtain an (ε, X0)-uniform variance
reduction. We first discuss how to choose good IS parameters for a given solution
x = (y, w) ∈ X , and then we combine the results to choose an overall IS distribution
for the whole set.

4.1 Choosing the IS parameters for a fixed solution ( y,w).

Given x = (y, w) ∈ X , let us denote |y| = ∑C
c=1 yc. In order to reduce the variance

of p̂IS0(x), from expression (26) we should minimize the term

Eξ

[

1{∑C
c=1 ycξc>w

}
C∏

c=1

(
ρc

ρ̂c

)ycξc (1 − ρc

1 − ρ̂c

)yc(1−ξc)
]

= Eξ

[

1{∑C
c=1 ycξc>w

}
C∏

c=1

(
ρc(1 − ρ̂c)

ρ̂c(1 − ρc)

)ycξc C∏

c=1

(
1 − ρc

1 − ρ̂c

)yc
]

. (42)

For each c ∈ C , let

λc := log

(
1/ρc − 1

1/ρ̂c − 1

)
= log

(
ρ̂c(1 − ρc)

ρc(1 − ρ̂c)

)
. (43)

Note that λc ≥ 0 when ρ̂c ≥ ρc—which is case since the IS distribution works
by inflating the connection rates so the event

∑C
c=1 ycξc > w happens more often.

Moreover, a bit of algebra shows that 1−ρc
1−ρ̂c

= eλcρc + (1− ρc). It follows that we can
write expression (42) as

Ax (λ) := Eξ

[

1{∑C
c=1 ycξc>w

}e−∑
c∈C λc ycξc

C∏

c=1

(
eλcρc + (1 − ρc)

)yc
]

. (44)

Minimizing Ax (λ) requires solving a multidimensional stochastic nonlinear prob-
lem, which is a difficult task. Alternatively, our approach is to minimize the largest
term inside the expected value, that is

Bx (λ) := max
ξ :∑C

c=1 ycξc>w

{

e−∑
c∈C λc ycξc

C∏

c=1

(
eλcρc + (1 − ρc)

)yc
}

. (45)

It is easy to see that Bx (λ) > 0. Moreover, from Proposition 1 we obtain that
Var

(
p̂IS0(x)

) ≤ Bx (λ)Var
(
p̂(x)

)
provided that Bx (λ) ≤ 1. Thus, we can reduce

the variance of the IS estimator p̂IS0(x) by minimizing Bx (λ) over λ ≥ 0. By using
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KKT conditions, we obtain a characterization for the optimal λ, which is given in the
following Theorem 1. Furthermore, by using (43) we can compute the corresponding
parameters ρ̂c = ρ̂c(λc) as

ρ̂c(λc) = eλcρc

eλcρc + (1 − ρc)
,

and we define ρ̂c(∞) := limλc→∞ ρ̂c(λc) = 1.
Before we state the Theorem we present an auxiliary result—of independent

interest—which gives a lower bound on the probability that a random variable defined
as a sum of independent Bernoulli random variables exceeds its mean. Unlike upper
bound inequalities such as Chebyshev’s, which are valid for any distribution, lower
bound inequalities typically require exploiting characteristics of the underlying dis-
tributions as we do below. The proposition will be used to verify the assumptions of
Theorem 1.

Proposition 3 Let ζ1, . . . , ζm bem ≥ 1 independent Bernoulli random variables with
P{ζi = 1} = pi , and suppose that 0 < pi < 1 for all i . Let Z := ∑m

i=1 ζi , and define
δ := mini pi (1 − pi ) > 0. Then, we have

P {Z > E[Z ]} >
δ

2m
. (46)

Proof See Appendix 2. ��
Theorem 1 Suppose that 0 < ρc < 1 for all c = 1, . . . ,C. Let x = (y, w) be such
that w ∈ N satisfies

∑C
c=1 ρc yc < w ≤ ∑C

c=1 yc − 1. Then the function Bx (λ) is
convex and there exists λ∗

x ∈ R+ ∪ {∞} such that the vector λ defined as λc = λ∗
x

∀c ∈ C minimizes Bx (λ). If w = ∑C
c=1 yc − 1, then the optimal λ∗

x is λ∗
x = ∞ and

ρ̂c(λ
∗
x ) = 1; otherwise, λ∗

x and ρ̂c(λ
∗
x ) satisfy

C∑

c=1

ρ̂c(λ
∗
x )yc = w + 1 and ρ̂c(λ

∗
x ) = eλ∗

xρc

eλ∗
xρc + (1 − ρc)

.

Proof See Appendix 2. ��
Theorem 1 reduces theminimization problem to a one-dimensional problem, which

can be efficiently solved numerically. Note that if x is such that |y| = w + 1, then
ρ̂c = 1. In this case p̂IS0(x) is constant and equal to p(x). Regarding the assumptions
of Theorem 1, the condition

∑C
c=1 ρc yc < w is satisfied in our routing and dimen-

sioning problem under mild assumptions. Indeed, since
∑C

c=1 yc ≤ C , it follows

from Proposition 3 that P
{∑C

c=1 ycξc >
∑C

c=1 ycρc
}

> δ/(2C) > 0, provided that

0 < ρc < 1 for all c. Therefore, if δ/(2C) ≥ α—which is typically the case since
α is very small—then w must be bigger than

∑C
c=1 ycρc to be feasible. Similarly,

the condition w ≤ ∑C
c=1 yc − 1 is harmless, since if w ≥ ∑C

c=1 yc then p(x) = 0
regardless of the value of the parameters ρc, i.e, there is nothing to estimate.
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4.2 Uniform variance reduction for the (CC-JRD) formulation

The results in Sect. 4.1 show how to control the variance of the estimator p̂IS0(x) for
a fixed x . As discussed earlier, finding an IS distribution that yields (ε, X)-uniform
variance reduction may be too strong a requirement [recall that X is set of points
x = (y, w) satisfying (17) and (19)]. To understand why, consider a point x ∈ X
such that p(x) � α. Not only is x infeasible for problem Problem (CC-JRD), but
also its variance may be large. On the other hand, there is no need to obtain a precise
estimation of that quantity in order to check its infeasibility. So, trying to obtain
uniform variance reduction over X may not be desirable, since by requiring such
uniformity over the whole set X we could end up with an ε close to 1, thus sacrificing
the quality of the estimators at the points that really matter, i.e. where p(x) ≈ α. The
numerical experiments in Sect. 5 will illustrate this issue. Of course, characterizing
exactly the feasibility set {x ∈ X : p(x) ≤ α} is impractical, since such a task is as
difficult as solving the original problem. Our approach is then to construct an outer
approximation X0 of the feasibility set such that variance is reduced uniformly over
X0. In what follows we proceed in that direction.

As discussed in Sect. 4.1, a necessary condition for feasibility of x (when α is
sufficiently small) is that w >

∑C
c=1 ρc yc. Thus, we can replace the original set X

with the set

X0 :=
{

x ∈ X : w >

C∑

c=1

ρc yc

}

(47)

since this entails simply adding a linear inequality to the original problem. Our initial
goal is to ensure uniform reduction variance for all x in X0.

The following result shows how to choose IS parameters in order to guarantee
variance reduction for all x ∈ X0. Recall from Theorem 1 that there is a minimizer of
the function Bx (λ) such that all components of λ have the same value. Consider now
the restriction of Bx to the set {λ ∈ R

C+ : λ1 = · · · = λC }. To abbreviate the notation,
we shall write this function as Bx (λ), where λ ∈ R+. Similarly, we will write the
corresponding IS parameter as ρ̂c(λ) for all c ∈ 1 . . .C .

Proposition 4 Let
εIS0(λ) := max

x∈X0
Bx (λ), (48)

where X0 is defined in (47). Then, εIS0(·) is a convex function and there is a λ̄ ∈ R+ ∪
{∞} that minimizes that function. Moreover, εIS0(λ̄) < 1 and p̂IS0 has (εIS0(λ̄), X0)-
uniform variance reduction with respect to the standard Monte Carlo estimator p̂.

Proof By Theorem 1, Bx (·) is a continuous convex function, so εIS0(·) is also a
continuous convex function. Moreover, using an argument similar to that used in
the proof of Theorem 1 we find that the derivative of the function ψx (λ) := log Bx (λ)

is

dψx

dλ
= −(w + 1) +

C∑

c=1

eλρc yc
eλρc + (1 − ρc)

.
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Since dBx
dλ

= Bx (λ)
dψx
dλ

and Bx (0) = 1, it follows that dBx
dλ

(0) = ∑C
c=1 ρc yc − (w +

1) < 0 for all x ∈ X0. Therefore, the λ̄ that minimizes εIS0(·) is such that λ̄ > 0
(possibly λ̄ = ∞) and εIS0(λ̄) < 1. Finally, from Proposition 1 we conclude that p̂IS0

has (εIS0(λ̄), X0)-uniform variance reduction with respect to p̂. ��

Further enhancement in variance reduction can be obtained as follows. As we have
seen in Sect. 4.1, for the points x = (y, w) such that w ≥ |y| we have p(x) = 0 and
so any sampling approximation will yield the correct value. Thus, we can assume that
w ≤ |y| − 1, which implies that

p(x) = P

{
C∑

c=1

ξc yc > w

}

≥ P

{
C∑

c=1

ξc yc > |y| − 1

}

= P

{
C∑

c=1

ξc yc = |y|
}

= P{ξc = 1, for all csuch that yc = 1} ≥
C∏

c=C−|y|+1

ρc,

where the last inequality arise from our stated assumption that ρ1 ≥ · · · ≥ ρC and the
independence of {ξc}. It follows that if

|y| ≤ n0 := max

{

k :
C∏

c=C−k+1

ρc ≥ Kα

}

(49)

for some reasonably large K (say, K = 10), then we have that p(x) ≥ Kα, in which
case we say that x is sufficiently far from the feasibility set and therefore variance
need not be reduced for such x . In addition, let w0(y) be a valid lower bound for w

for any feasible x , such that w0(y) >
∑C

c=1 ρc yc (later we will see how to construct
one such bound). Define the set

X ′
0 := {x ∈ X0 : w ≥ w0(y) and |y| ≥ n0}. (50)

Since X ′
0 ⊆ X0, from Proposition 4 it is clear that by re-defining εIS0 as εIS0(λ) :=

maxx∈X ′
0
Bx (λ) we also obtain uniform variance reduction on X ′

0. As we discussed at
the beginning of this section, the advantage of working with the reduced set X ′

0 instead
of X0 is that, by discarding points that are “too far” from the feasibility set (in the
sense that p(x) ≥ Kα) and, by cutting further the feasibility set via the sharper lower
bound w0(y), larger variance reduction can be obtained; as we shall see in Sect. 5,
such intuition is confirmed by the numerical experiments.

It remains to discuss how to calculate εIS0(λ) in (48) (using X ′
0 in (50) in place of

X0) since the maximum is computed over an uncountable set. In the particular case
where w0(y) only depends on |y|, let xk be the routing such that the k connections
with highest rates are routed through the link, i.e., yc = 1c≤k , and let wk := w0(y)
for y such that |y| = k. Then we have
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Fig. 2 Example of the values of Bxk (λ) for C = 21 connections with rates ρc randomly chosen between

0.1 and 0.3 and α = 10−6 for λ ∈ [0, 4] (left) and an enlarged version for λ ∈ [1, 2.5] (right)

εIS0(λ) = max
x∈X0

{

exp
(− λ(w0(y) + 1)

) C∏

c=1

(
1 + ρc(e

λ − 1)
)yc
}

= max
k=n0,...,C

max
x :|y|=k

{

exp
(− λ(w0(y) + 1)

) C∏

c=1

(
1 + ρc(e

λ − 1)
)yc
}

= max
k=n0,...,C

{

exp
(− λ(wk + 1)

) k∏

c=1

(
1 + ρc(e

λ − 1)
)
}

= max
k=n0,...,C

{
Bxk (λ)

}
.

Hence, in order to find λ̄ that minimizes εIS0(·)we only need to consider the maximum
among C − n0 + 1 convex functions.

To illustrate the calculation, in Fig. 2 we plot Bxk for a case of C = 21 connections
with rates ρc randomly chosen between 0.1 and 0.3 and α = 10−6. We use K = 10
in (49), which yields n0 = 6, and the lower bound w0(y) constructed as the (1 − α)-
quantile of a binomial distribution with parameters |y| and ρC . It can be seen that Bxk
has a steep decrease near zero, and εIS0(λ) can reach very low values, resulting in
considerable variance reduction.

Finally, note that all of the results in this section can be naturally extended to the
estimator p̂IS(x) defined in (23). In fact, in that case the calculation is much easier,
due to the fact that the likelihood function does not depend on x . We state the result
in Proposition 5 below.

Proposition 5 Suppose that the lower bound w0(y) is a non-decreasing function that
only depends on |y|, let wk := w0(y) for y s.t. |y| = k, and let

εIS(λ) := e−λ(wn0+1)
C∏

c=1

(eλρc + (1 − ρc)), (51)
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where n0 is defined in (49). If
∑C

c=1 ρc ≤ wn0 + 1 then the optimal λ̄ that minimizes
εIS(·) satisfies

C∑

c=1

ρ̂c(λ̄) = wn0 + 1 and ρ̂c(λ̄) = eλ̄ρc

eλ̄ρc + (1 − ρc)
.

Moreover, εIS(λ̄) < 1 and p̂IS has (εIS(λ̄), X ′
0)-uniform variance reduction with

respect to the standard Monte Carlo estimator p̂.

Proof By doing a similar construction to that in Sect. 4.1 for the estimator p̂IS(x), we
obtain that the quantity Bx (λ) defined in (45) is the same except that it does not have
the exponent yc. Thus, Theorem 1 applies, with yc = 1 for all c. It follows that the
quantity analogous to (48) can be written as

ε(λ) := max
x∈X ′

0

{

e−λ(w+1)
C∏

c=1

(eλρc + (1 − ρc))

}

.

Note that the quantity inside the braces is a decreasing function of w, so the max is
achieved at the smallest value of w + 1 in X ′

0, which is wn0 + 1. This leads to the
expression (51). By applying logarithm and minimizing over λ we reach the desired
conclusion. ��

We close this section by recalling that the above calculations have been conducted
for an arbitrary arc a. While the calculations are similar for other arcs, the obtained IS
parameter values for the estimator p̂IS0 may of course be different, as they depend on
which and how many connections are routed through that particular arc. In the case
of the estimator p̂IS, however, we see from Proposition 5 that the parameter values
depends on all the connections that can be potentially routed through that arc.

5 Computational experiments

In this section we compare the performance of the different approaches for solving
problem (CC-JRD) through computational experiments. When we use estimators
p̂a(x), p̂ISa (x) and p̂IS0a (x), for each arc a ∈ A, we will refer to the corresponding
approximation as SAA, SAA-IS and SAA-IS0, respectively. We are interested in eval-
uating the quality of the solutions obtained, in particular when the sample size N is
significantly smaller than 1/α.

We test the three approaches over a ring topology, which is one of themost common
real-world topologies for optical networks. We study rings with 7 and 9 nodes for the
homogeneous case, in which all connection rates ρc are identical and equal to 0.1 (note
that in those cases the random vector have sizesC = 42 andC = 72, respectively). As
mentioned earlier, in that case the problem can be solved directly by inverting binomial
distributions; nevertheless, we apply our SAA methodology to that problem in order
to verify the quality of the solutions obtained with the importance sampling approach.
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Table 1 Optimal IS parameter ρ̂ and resulting variance reduction ε for different IS

Instance SAA-IS SAA-IS0-1 SAA-IS0-2 SAA-IS0-3

Size α ρ̂ ε I S ρ̂ ε I S0 ρ̂ ε I S0 ρ̂ ε I S0

7 10−3 0.142 8.3E−01 0.524 6.9E−03 0.147 7.9E−01 0.644 6.E-02

7 10−6 0.285 5.9E−02 0.693 9.0E−06 0.147 7.9E−01 0.667 4.E-03

9 10−3 0.100 1.0E+00 0.437 1.2E−02 0.128 8.7E−01 0.523 1.E-01

9 10−6 0.166 4.7E−01 0.575 2.8E−05 0.128 8.7E−01 0.555 2.E-02

We later report experiments conducted for the heterogeneous case, for which there is
no analytical solution.

As previously explained,we need to consider a smaller subset X ′
0 where the variance

of p̂IS0 is uniformly reduced, which is given by the choice of the functionw0(y). Table
1 shows the obtained IS measure ρ̂ and the resulting theoretical variance reduction
obtained by applying different IS estimators, with different functions w0. All IS para-
meters were computed using Propositions 4 and 5, for n0 computed using (49) with
K = 10. In column SAA-IS0-1 we use the best possible lower bound w0(y), obtained
by computing the (1− α)-quantile of a binomial distribution with parameters |y| and
ρ. We see that we obtain enormous variance reduction in this case for all x ∈ X ′

0,
with values similar to the value of α. However, note that by adding this constraint
to the problem we generate exactly the feasibility set of problem (CC-JRD), without
requiring to use a sampling approximation of the chance constraints; of course, we can
do that in this case because we are dealing with a homogeneous setting, which as we
mentioned before can be solved without sampling—recall that our goal in studying the
homogeneous case is just to test our procedure. In column SAA-IS0-2 we use the worst
lower bound that satisfy the conditions of Theorem 1, that is, w0(y) = ∑C

c=1 ρc ya,c.
In this case, the subset X ′

0 is too large, resulting in negligible variance reduction. In
order to mimic an intermediate situation, in column SAA-IS0-3 we present the results
obtained using a linear function w0 = m|y|, where m is the maximum scalar such
that w0 is a valid lower bound. As we can see, by using this restriction of the feasible
set we still can decrease the variance of the estimator by 2–3 orders of magnitude.
Hence, in the following experiments we will use this last IS estimator, and we include
the constraint wa ≥ m

∑C
c=1 ya,c for all a ∈ A in all formulations.

We solve the corresponding MIP formulations, SAA, SAA-IS and SAA-IS0, with
sample sizes N = 20 and N = 50 for ρ = 0.1 and α = 10−3 and α = 10−6.
Additionally, we solve the SAA formulation with N = 1000 samples. Each instance
is solved 100 times with different random seeds.

The average value of the obtained objective function is presented in Table 2, and
the true optimal value is presented in column Opt. As expected, we see that the SAA
formulation only provides a reasonably good approximation of the true optimum value
when the number of samples is of order 1/α. A striking feature of the SAA-IS0 is that
it generates good approximation of the real optimal value of the problem even with a
very small number of samples. However, this IS requires more complex formulations
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that run out of memory (OOM) for one of these instances. For the case of SAA-IS, the
approximation is not as good as in the previous case, but still better than the traditional
SAA formulation. Those results strongly support the use of importance sampling in
chance-constrained problems with very small α.

Table 2 illustrates our claim that by using importance sampling it is possible to
obtain good approximations with very reduced sample sizes, that is, much smaller
than O(1/α). In order to study the dispersion of these values, in Fig. 3 we present
a boxplot of the resulting objective values for each approach in the case of a ring of
size 7 where α = 10−3 (left) and 10−6 (right). The first three columns show SAA,
SAA-IS and SAA-IS0 for N = 50, respectively. The last column exhibit the values
for SAA with N = 1000 samples. As we can see, IS estimators produce better results
than SAA in almost all runs, particularly when α = 10−6.

It is worth noting that in the majority of cases the resulting objective values are
smaller than the real optimal value in almost every run. Therefore, the resulting solution
of each problem must be infeasible for the original problem. This infeasibility comes
from an underestimation of the capacity wa required at each link a ∈ A, given the
corresponding routing decision of each solution (i.e., the y variables). In fact, all runs
of SAA and SAA-IS returns an infeasible solution, but for SAA-IS0 that is not the
case. For the ring of size 7, N = 50 samples and α = 10−3 and 10−6, formulation
SAA-IS0 returns 4 and 28 times (of the 100 runs) the true optimum, respectively. For

Table 2 Computational results for the homogeneous case ρ = 0.1

Instance Optim. SAA SAA-IS SAA-IS0

Size α N = 20 N = 50 N = 1000 N = 20 N = 50 N = 20 N = 50

7 10−3 47 31.87 35.22 44.56 35.62 40.41 44.36 46.26

7 10−6 68 42.34 42.77 48.10 52.01 57.26 67.03 67.65

9 10−3 81 57.57 62.01 76.93 57.57 62.01 78.73 OOM

9 10−6 117 72.64 73.51 84.07 77.62 82.61 114.94 117.29

Fig. 3 Homogeneous case: boxplot of the different estimators for a ring of size 7 andρ = 0.1, forα = 10−3

and α = 10−6
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the ring of size 9, N = 50 samples and α = 10−6, this formulation returns 19 times
the true optimum.

For the heterogeneous case, we use a traffic rate ρc randomly chosen according to
a uniform distribution between 0.1 and 0.3. Recall that the exact optimal solution for
these instances is not known. Nevertheless, we can obtain a lower bound for variables
w by computing the (1 − α)-quantile of a binomial distribution with parameters |y|
and ρC , that is, the smallest rate. Then, we use this lower bound as our function w0(y)
to define the set X ′

0 where variance will be uniformly reduced. Note that each link
has a different set of connections that can potentially be routed through them, so a
different IS parameter may be obtained for each link. We choose the IS parameter ρ̂c
for each link as explained in Propositions 4 and 5. The range of theoretical ε-variance
reduction among all links is presented in Table 3.

InTable 4we showresults for the heterogeneous case.Asbefore, each columnshows
the average obtained objective value among 100 runs of each configuration. Since the
exact optimal solution for these instances is not known, we present an optimality
range, constructed assuming that for each link all connections have an homogeneous
rate equal to the minimum (maximum) rate among all connections that can be routed
though them, in order to obtain a lower (upper) bound of the optimal value.

It can be seen that for SAA, the resulting objective values are very close to the
lower bound w0(y), particularly for α = 10−6. For SAA-IS, the results are similar
to the SAA, which is explained by the small variance reduction of this estimator, as
presented in Table 3. However, for SAA-IS0 we obtain higher values than the other
estimators using only N = 20 samples. Since rates are chosen uniformly between
[0.1, 0.3], it is reasonable to expect that the optimal value should be near the middle
of the optimality range, which is the case for the values obtained by SAA-IS0 for the
7-node ring instances. Nevertheless, it is hard to conclude further about the quality

Table 3 Range of optimal
ε-variance reduction for
different IS, among all links

Size α ε I S ε I S0

7 10−3 1.000 0.1589–0.2994

7 10−6 0.1370–0.2821 0.0024–0.0085

9 10−3 1.000 0.2081–0.4366

9 10−6 0.8441–0.9121 0.0036–0.0177

Table 4 Computational results for the heterogeneous case ρc ∈ [0.1, 0.3]
Instance Optim. range SAA SAA-IS SAA-IS0

N α N = 20 N = 50 N = 1000 N = 20 N = 50 N = 20 N = 50

7 10−3 48–70 49.29 50.93 60.38 49.29 50.93 57.67 OOM

7 10−6 69–84 69.00 69.00 69.18 70.03 71.40 76.60 OOM

9 10−3 84–135 85.34 87.92 OOM 85.34 87.92 OOM OOM

9 10−6 122–171 122.07 122.14 123.44 122.24 122.51 OOM OOM
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of the approximation of our IS estimators without knowing the true optimal value.
Unfortunately the formulation SAA-IS0 could not be solved for the 9-node ring and for
7-node ring with N = 50, since the resulting mixed-integer programs are bigger than
the homogeneous case (O(|A|·N ·C) variables versusO(|A|·N ) for the homogeneous
case), and with a looser LP relaxation. Still, our goal in this paper is to provide a “proof
of concept” to demonstrate that the use of importance sampling in rare-event chance-
constrained problems has the potential to allow for the solution of such problems with
small sample sizes; conceivably, a more efficient formulation of the mixed integer
program can be derived by exploiting characteristics of the problem, but such a task
is out of the scope of this paper.

6 Conclusions

Sampling methods for chance-constrained programming (CCP) problems are
extremely popular and have been used extensively lately. Our main contribution in
this paper is to address the situation in which the desired reliability level is very close
to one, e.g. 1 − 10−6. We showed that importance sampling is a provably convergent
tool to solve rare-event CCP problems. Importance sampling has been extensively used
in simulation to estimate rare events, but in an optimization context several difficulties
arise. The main problem is the dependence of the estimator on the decision variables,
which motivates us to look for estimators that uniformly reduce the variance over the
decision space.

We studied a problem in telecommunications and wrote explicit formulations that
use IS techniques. We constructed IS distributions for which we can theoretically
guarantee uniform variance reduction over an outer approximation of the feasibility
set. For the homogeneous case our experiments showed that sample sizesmuch smaller
than 1/α, e.g. α = 10−6 with a sample size of 50, can yield excellent approximations
to the true optimum. In the heterogeneous case the optimal solution is not known but
we showed that small sample sizes can yield good solutions as in the homogeneous
case. For the SAA-IS0 estimator the computational burden is significant and better
formulations need to be derived in order to obtain solutions for the most demanding
cases.

We would like to highlight the problem-dependent characteristic of importance
sampling approach.Webelieve that in order to use IS techniques in otherCCPproblems
with rare events two requirements must be satisfied: on one hand, IS estimators must
be customized for each decision and, at the same time, lead to a tractable optimization
problem. On the other hand, one must find an outer approximation of the feasibility set
in which variance can be significantly reduced. It is worth pointing out that for some
problems using a non adapted IS estimator such as SAA-IS can be a good compromise
between a simplemathematical programming formulation and a good enough variance
reduction, although it does not perform as well as an adapted one such as SAA-IS0.

Therefore, we believe the results and ideas presented here could serve as a guidance
for choosing the appropriate IS estimator for other problems. We hope that this work
will foster further research on rare-event chance constrained problems, which have
received little attention so far in the literature.
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Appendix 1: MIP formulation for p̂IS0a estimator under heterogeneous
demand

We can formulate an integer linear programming model for this problem

min
∑

a∈A

wa (52)

N yc = dc ∀c = 1, . . . ,C (53)

C∑

c=1

ξ̂ sc yc,a ≤ wa +
C∑

k=1

k · ua,s,k ∀a ∈ A, ∀s = 1, . . . , N (54)

C∑

c=1

ξ̂ sc yc,a ≥
C∑

k=1

k · ua,s,k ∀a ∈ A, ∀s = 1, . . . , N (55)

N∑

s=1

C∑

k=1

e−kλua,s,k ≤ αN
C∑

k=0

Ga(k)va,k ∀a ∈ A (56)

C∑

c=1

yc,a =
C∑

k=0

kva,k ∀a ∈ A (57)

C∑

k=0

va,k = 1 ∀a ∈ A (58)

C∑

k=1

ua,s,k ≤ 1 ∀a ∈ A, ∀s = 1, . . . , N (59)

wa ∈ N, yc,a ∈ {0, 1}, ua,s,k ∈ {0, 1},
va,k ∈ {0, 1} ∀a ∈ A, ∀c = 1, . . . ,C,

∀s = 1, . . . , N (60)

Binary variables va,k , together with Eqs. (58) and (57), satisfy that va,k = 1 if and
only if

∑C
c=1 yc,a = k. The role of binary variables u is explained in the following

lemma

Lemma 2 Let (x, w, u, v) be an optimal solution of previous formulation, then there
exist an optimal solution (x, w, û, v) such that
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1.
∑C

c=1 ξ̂ sc yc,a ≤ wa if and only if ûa,s,k = 0 for all k = 1, . . . ,C.
2. if ûa,s,k = 1 then

∑C
c=1 ξ̂ sc yc,a = k,

Hence,

C∑

k=1

e−kλûa,s,k = e
∑C

c=1 ξ̂ sc yc,a1{ C∑

c=1
ξ̂ sc yc,a>wa

}

Proof First, note that constraint (54) impose that if ua,s,k = 0 for all k then∑C
c=1 ξ̂ sc yc,a ≤ wa . Suppose that

∑C
c=1 ξ̂ sc yc,a ≤ wa but ua,s,k′ = 1 for some k′.

It is easy to see that defining ûa,s,k = 0 for all k and û = u for the other variables,
then û also satisfy Eqs. (54) and (55), and since û ≤ u then it also satisfy Eqs. (59)
and (56), hence (x, w, û, v) is also optimal. Repeating this procedure is easy to see
that we obtain a solution that satisfies condition (1). For the second condition, suppose
that ua,s,k = 1 for some k but

∑C
c=1 ξ̂ sc yc,a > k. Let k̂ = ∑C

c=1 ξ̂ sc yc,a and define
ûa,s,k̂ = 1, ûa,s,k = 0 ∀k �= k̂ and û = u for the other variables. By definition,

(w, x, û, v) satisfies (54) and (59), and since k̂ > k then it also satisfies (54). On the
other hand, since λ > 0 then e−λk > e−λk̂ so it also satisfy (56) and then (x, w, û, v)

is also optimal. Repeating this procedure is easy to see that we obtain a solution that
satisfies condition (2). ��

Lemma 2 shows that the optimal solution (y, w) of this MIP formulation satisfies

1

N

N∑

s=1

e
∑C

c=1 ξ̂ sc yc,a1{ C∑

c=1
ξ̂ sc yc,a>wa

} ≤ α · Ga

(
C∑

c=1

yc,a

)

∀a ∈ A,

which is the desired approximation of equation p̂IS0a ≤ α.

Appendix 2: Proofs of results

Proof of Lemma 1

Lemma 1 Suppose that the set-function Ix is such that G(x, ·) is Ix -determined for
each x ∈ X. Given an i.i.d. sample (ξ̂1, . . . , ξ̂ N ) from the distribution of ξ̂ , let

p̂IS0(x) := 1

N

N∑

j=1

1{G
(
x,ξ̂ j

)
>0}Lx (ξ̂

j ). (61)

Then p̂IS0(x) is also an unbiased estimator of p(x). Moreover,

Var( p̂IS0(x)) = Var( p̂IS(x)) − 1

N
E

ξ̂

[
Var

(
1{G(x,ξ̂ )>0} | (ξ̂i )i∈Ix

)]
(62)
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Proof First let us prove that the estimator p̂IS0(x) is unbiased, for which it suffices to

show that E
ξ̂

[
1{G(x,ξ̂ )>0}Lx (ξ̂ )

]
= p(x). Indeed, we have

E
ξ̂

[
1{G(x,ξ̂ )>0}Lx (ξ̂ )

]
= E

ξ̂

[
1{G(x,ξ̂ )>0}Eξ̂

[
L(ξ̂ ) |(ξ̂i )i∈Ix

]]

= E
ξ̂

[
E

ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ ) | (ξ̂i )i∈Ix

]]
(63)

= E
ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ )

]
= p(x), (64)

where the second equality follows from the assumption that G(x, ·) is Ix -determined,
which implies that G(x, ξ̂ ) is measurable with respect to the sigma-algebra generated
by (ξ̂i )i∈Ix .

For the second assertion of the theorem, note that

E
ξ̂

[
12

{G(x,ξ̂ )>0}Lx (ξ̂ )2
]

= E
ξ̂

[
1{G(x,ξ̂ )>0}

(
E

ξ̂

[
L(ξ̂ ) | (ξ̂i )i∈Ix

])2]

= E
ξ̂

[(
E

ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ ) | (ξ̂i )i∈Ix

])2]

= E
ξ̂

[
E

ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ )2 | (ξ̂i )i∈Ix

]

− Var
(
1{G(x,ξ̂ )>0}L(ξ̂ ) | (ξ̂i )i∈Ix

)]

= E
ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ )2

]

− E
ξ̂

[
Var

(
1{G(x,ξ̂ )>0}L(ξ̂ ) | (ξ̂i )i∈Ix

)]

and therefore

NVar( p̂IS0(x)) = E
ξ̂

[
12

{G(x,ξ̂ )>0}Lx (ξ̂ )2
]

− p(x)2 = E
ξ̂

[
1{G(x,ξ̂ )>0}L(ξ̂ )2

]

− E
ξ̂

[
Var

(
1{G(x,ξ̂ )>0}L(ξ̂ ) | (ξ̂i )i∈Ix

)]
− p(x)2

= NVar( p̂IS(x)) − E
ξ̂

[
Var

(
1{G(x,ξ̂ )>0} | (ξ̂i )i∈Ix

)]
.

��

Proof of Proposition 3

Proposition 3 Let ζ1, . . . , ζm bem ≥ 1 independent Bernoulli random variables with
P{ζi = 1} = pi , and suppose that 0 < pi < 1 for all i . Let Z := ∑m

i=1 ζi , and define
δ := mini pi (1 − pi ) > 0. Then, we have

P {Z > E[Z ]} >
δ

2m
. (65)
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Proof Let u : [0,m] �→ R be the function defined as u(t) := m2 − t2. Since u(·) is
nonnegative and decreasing on [0,m], we have that

P {Z ≤ E[Z ]} = P {u(Z) ≥ u(E[Z ])}
= P

{
m2 − Z2 ≥ m2 − (E[Z ])2

}

≤ E
[
m2 − Z2

]

m2 − (E[Z ])2 ,

where the last inequality follows from Markov’s inequality. Thus, we have

P {Z > E[Z ]} ≥ 1 − E
[
m2 − Z2

]

m2 − (E[Z ])2 = E
[
Z2
]− (E[Z ])2

m2 − (E[Z ])2
= Var(Z)

(m + E[Z ])(m − E[Z ]) . (66)

Next, notice that independence of {ζi } implies that Var(Z) = ∑m
i=1 pi (1− pi ). More-

over, since 0 < E[Z ] < m we have that m + E[Z ] < 2m, m − E[Z ] < m and thus
from (66) we have that

P {Z > E[Z ]} >

∑m
i=1 pi (1 − pi )

2m2 ≥ δm

2m2 = δ

2m
.

��

Proof of Theorem 1

Theorem 1 Suppose that 0 < ρc < 1 for all c = 1, . . . ,C. Let x = (y, w) be such
that w ∈ N satisfies

∑C
c=1 ρc yc < w ≤ ∑C

c=1 yc − 1. Then the function Bx (λ) is
convex and there exists λ∗

x ∈ R+ ∪ {∞} such that the vector λ defined as λc = λ∗
x

∀c ∈ C minimizes Bx (λ). If w = ∑C
c=1 yc − 1, then the optimal λ∗

x is λ∗
x = ∞ and

ρ̂c(λ
∗
x ) = 1; otherwise, λ∗

x and ρ̂c(λ
∗
x ) satisfy

C∑

c=1

ρ̂c(λ
∗
x )yc = w + 1 and ρ̂c(λ

∗
x ) = eλ∗

xρc

eλ∗
xρc + (1 − ρc)

.

To prove the theorem, we need the following lemma, the proof of which is shown
after the proof of the theorem.

Lemma 3 For n ≥ 1, let ρi , i = 1, . . . , n be numbers such that ρi ∈ (0, 1) and
ρ1 ≥ ρ2 ≥ . . . ≥ ρn. Given an integer w such that 0 ≤ w ≤ n − 1, consider problem
(P) defined as follows:

min
λ∈Rn+

max
zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

ziλi +
n∑

i=1

log(eλi ρi + (1 − ρi )). (P)
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Then, there exists an optimal solution to (P) that satisfies λ1 ≤ λ2 ≤ . . . ≤ λn.

Proof (of Theorem 1) Let n = ∑C
c=1 yc. Without loss of generality, let us assume for

the sake of simplifying notation that the set {c : yc = 1} corresponds to {1, . . . , n}.
Since the log function is increasing, we have that

log(Bx (λ)) = max
zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

ziλi +
n∑

i=1

log(eλi ρi + (1 − ρi ))

By Lemma 3, minimizing log(Bx (λ)) amounts to solving the following problem:

min
λ∈Rn

ψ(λ) := −
w+1∑

i=1

λi+
n∑

i=1

log(eλi ρi + (1 − ρi )) (67)

λi ≤ λi+1 i = 1 . . . n − 1 (68)

λ1 ≥ 0 (69)

Note that the objective function of the above problem is strictly convex in λ. In fact,
its second derivatives are

∂2ψ

∂λ2i
= eλi ρi (1 − ρi )

(eλi ρi + (1 − ρi ))2
> 0,

∂2ψ

∂λi∂λ j
= 0.

Since Bx (λ) = exp(log(Bx (λ)) and log(Bx (λ)) is convex—though not strictly convex
due to the componentsλc such that yc = 0—it follows that Bx is convex inλ. Of course,
the components λc such that yc = 0 do not affect the value of Bx (λ).

Suppose first that w = n − 1. Then, the first derivative of the objective function in
(67) is given by

∂ψ

∂λi
= −1 + eλi ρi

eλi + (1 − ρi )
, i = 1, . . . , n,

so we see that limλ→∞ ∇ψ(λ) = 0. Notice that we can in particular interpret limλ→∞
as limλ→∞ with λi = λ. That is, in that case the optimal solution of (67)–(69) is
λi = ∞, i = 1, . . . , n.

Consider now the casew < n−1.Wewill show that problem (67)–(69) has a unique
optimal solution, which can be found by writing the Karush-Kuhn-Tucker conditions
as follows:
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−1(i≤w+1) + eλi ρi

eλi ρi + (1 − ρi )
+ μi − μi−1 = 0 i = 1 . . . n − 1 (70)

eλnρn

eλnρn + (1 − ρn)
− μn−1 = 0 (71)

μi (λi+1 − λi ) = 0 i = 1 . . . n − 1 (72)

μ0λ1 = 0 (73)

μi ≥ 0 i = 0 . . . n − 1 (74)

where μ = (μi ) is the vector of Lagrangean multipliers of constraints (68) and μ0 is
the Lagrangean multiplier of constraint (69).

Consider now a particular choice of vectors μ and λ defined as follows. All com-
ponents of λ are identical, with λi = λ∗, where λ∗ ∈ R+ solves the equation

ϕ(λ∗) :=
n∑

i=1

eλ∗
ρi

eλ∗
ρi + (1 − ρi )

= w + 1. (75)

Note that we can always find such λ∗, since the function ϕ(λ) is continuous and
increasing, and

ϕ(0) =
n∑

i=1

ρi < w < w + 1 (76)

lim
λ→∞ ϕ(λ) = n > w + 1. (77)

The inequalities in (76) follow from the assumptions of the theorem on w and the fact
that we are analyzing the case w < n − 1. The components of μ are defined as

μ0 := 0 (78)

μi := min{i, w + 1} −
i∑

j=1

eλ∗
ρ j

eλ∗
ρ j + (1 − ρ j )

i = 1, . . . , n − 1. (79)

We claim that μ and λ satisfy the KKT conditions (70)–(74) laid out above. To see
that, observe that Eqs. (78)–(79) imply (70). Equation (71) follows from (75), since
we have

eλ∗
ρn

eλ∗
ρn + (1 − ρn)

= w + 1 −
n−1∑

i=1

eλ∗
ρi

eλ∗
ρi + (1 − ρi )

and the latter term coincides with μn−1 defined in (79). Equations (72) and (73) are
trivially satisfied. Finally, we show that (74) holds, with strict inequality if i ≥ 1.
Indeed, (75) implies that
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i∑

j=1

eλ∗
ρ j

eλ∗
ρ j + (1 − ρ j )

< w + 1 i = 1, . . . , n − 1

and clearly have

i∑

j=1

eλ∗
ρ j

eλ∗
ρ j + (1 − ρ j )

< i i = 1, . . . , n

as each term in the summand is less than 1. ��

Proof (of Lemma 3) Suppose that λ = (λ1, . . . , λn) is an optimal solution and there
exists some j < n such that λ j > λ j+1. We will show that λ̄ defined as λ̄ j = λ j+1,
λ̄ j+1 = λ j and λ̄i = λi for i �= { j, j + 1} has no worse objective function than λ. Let
Δ be defined as the difference in objective function between λ and λ̄, i.e.,

Δ = max
zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

ziλi +
n∑

i=1

log(eλi ρi + (1 − ρi )) (80)

−
⎛

⎜
⎝ max

zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

zi λ̄i +
n∑

i=1

log(eλ̄i ρi + (1 − ρi ))

⎞

⎟
⎠ . (81)

We will prove that Δ ≥ 0, showing that λ̄ is no worse than λ. Note initially that

max
zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

ziλi = max
zi∈{0,1}n∑
i zi=w+1

−
n∑

i=1

zi λ̄i ,

since the maximum value on both sides is equal to the sum of the smallest w + 1
components of the vector λ. Thus, we only need to compare remaining part of the
objective function, i.e., we have

Δ =
n∑

i=1

log(eλi ρi + (1 − ρi )) −
n∑

i=1

log(eλ̄i ρi + (1 − ρi ))

= log(eλ j ρ j + (1 − ρ j )) + log(eλ j+1ρ j+1 + (1 − ρ j+1))

− log(eλ̄ j ρ j + (1 − ρ j )) − log(eλ̄ j+1ρ j+1 + (1 − ρ j+1)).
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Since λ̄ j = λ j+1 and λ̄ j+1 = λ j , it follows that

Δ = log

(
eλ j ρ j + (1 − ρ j )

eλ j+1ρ j + (1 − ρ j )

)
− log

(
eλ j ρ j+1 + (1 − ρ j+1)

eλ j+1ρ j+1 + (1 − ρ j+1)

)

= log

⎛

⎝ eλ j − eλ j+1

eλ j+1 + 1
ρ j

− 1
+ 1

⎞

⎠− log

⎛

⎝ eλ j − eλ j+1

eλ j+1 + 1
ρ j+1

− 1
+ 1

⎞

⎠ .

Note that the argument inside the log is positive, since λ j > λ j+1. Moreover, since
ρ j ≥ ρ j+1, we see that 1/ρ j − 1 ≤ 1/ρ j+1 − 1 and hence we conclude that
Δ ≥ 0. ��
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