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Abstract Recent years have seen growing interest in coherent risk measures, espe-
cially in Conditional Value-at-Risk (CVaR). Since CVaR is a convex function, it is
suitable as an objective for optimization problems when we desire to minimize risk.
In the case that the underlying distribution has discrete support, this problem can be
formulated as a linear programming (LP) problem. Over more general distributions,
recent techniques, such as the sample average approximation method, allow to approx-
imate the solution by solving a series of sampled problems, although the latter approach
may require a large number of samples when the risk measures concentrate on the tail
of the underlying distributions. In this paper we propose an automatic primal-dual
aggregation scheme to exactly solve these special structured LPs with a very large
number of scenarios. The algorithm aggregates scenarios and constraints in order to
solve a smaller problem, which is automatically disaggregated using the informa-
tion of its dual variables. We compare this algorithm with other common approaches
found in related literature, such as an improved formulation of the full problem, cut-
generation schemes and other problem-specific approaches available in commercial
software. Extensive computational experiments are performed on portfolio and general
LP instances.
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1 Introduction

Managing to successfully deal with uncertainty and risk has always been a major con-
cern in optimization (see [1-5]), which has many obvious applications. A first mathe-
matical treatment of risk came with the work of Von Neumann and Morgenstern [6]; in
which, under some rationality assumptions, the existence of a risk measure for agents
was assured and linked then agent’s attitude towards risk to the concavity of the utility
function of each agent. A first algorithmic way to incorporate risk in decision making
is probably the seminal work of Markowitz [7], in which the variance of return is used
as a proxy of risk. Nonetheless, this variance is introduced as a reasonable way to force
diversification in portfolio optimization, rather than as a rigorous way to handle risk in
general. An important appeal of the approach was, however, the possibility of actually
solving those types of problems. Another important development was the introduc-
tion of the Dual Theory of Choice of Yaari [8,9], which states that risk aversion and
diminishing returns on wealth can be seen as separated aspects, which also introduces
a precise notion of certainty equivalent. More recently, Artzner et al. [10,11], once
again motivated by the portfolio problem, proposed the concept of Coherent Risk
Measures in the setting of discrete random variables and proposed, as an example,
the Conditional Value-at-Risk or CVaR. This was quickly followed up by the work of
Rockafellar and Uryasev [12,13], in which the authors present an extended formula-
tion for the problem of evaluating the CVaR, and furthermore, test their ideas on the
classical portfolio problem with sampled data but using a CVaR objective function
and/or CVaR constraints. The importance of the CVaR was further advanced by the
result of Kusuoka [14] which characterized, in a continuous setting and under some
extra conditions, all coherent, comonotone, law invariant risk measures (also known
as distortion risk measures [15]) as combinations of CVaR measures, which makes the
CVaR a basis of all such risk measures. Interestingly enough, distortion risk measures
are closely related to risk-averse measures introduced early on by Yaari [8].

The extended formulation of the CVaR, by Rockafellar and Uryasev [13], opened
up the possibility of using all the approximation machinery from standard stochastic
programs (See for example [16] for an in-depth reference, and [17,18] for examples
of their use); these results mean that, in theory, under some mild conditions on the
domain of the optimization problem and on the characteristics of the space of random
variables, solving optimization problems with CVaR objectives can be approximated
by solving a series of sampled problems. In particular, for most common portfolio
problems, this amounts to solving a series of linear programs (LP). Unfortunately,
there are examples [19] in which using too few scenarios leads to strange behavior,
prompting the need to solve these problems using large sets of scenarios. This has
bolstered research on algorithms and formulations to solve these specially structured
LPs. Lim et. al [20] proposed a special-purpose solver for simple portfolio problems
with CVaR objective functions. Later on, Ogryczak and Sliwinski [21] compared
different formulations for the same problem, thereby showing important advantages of
using the dual formulation for these LPs. And more recently, Kiinzi-bay and Mayer [22]
proposed a specialized cut-generation approach (based on the L-shaped method [23])
for the problem. Moreover, similar techniques can be applied to other extensions of
the CVaR [24] and other risk measures [25].
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An aggregation algorithm for minimizing CVaR in linear programs 619

In this paper we propose an automatic, exact, primal-dual aggregation method to
solve general linear programs (as opposed to the classical portfolio problem) under
a CVaR objective function that can deal with a very large number of scenarios. We
compare our method with general-purpose solvers and other specialized approaches,
under the general set of linear programs found in Netlib [26] as well as on portfolio
problems, exploring the issue of scalability and sensibility to the risk-parameter ¢ of
the objective function. These experiments show that the proposed algorithm results
in a speed-up factor of 80 when compared with the best general LP-algorithm, and a
speed-up factor of 3—20 when compared with other specialized algorithms.

The rest of the paper is organized as follows: Sect. 2 defines the concept of CVaR,
introduces linear programs with CVaR objective functions, its representation in the
case of finite-support distributions, and the resulting LP problems. Section 3 presents
two algorithms to solve the problem found in the related literature. Section 4 describes
our algorithm and discusses some extensions to other related problems. Section 5
presents our computational experiments and their results. Finally, in Sect. 6, we sum-
marize our results and deliver our conclusions.

2 Linear programs with CVaR objective functions and discrete distributions
Given x € R”, a linear loss-function Z(x) = —¢cx, where ¢ is a random parameter,
and a probability distribution function F;(1) = P(Z < 1), the Value-at-Risk (VaR) at
level ¢ is defined as

VaR, (2) = inf {A|F;(A) > ¢}

Similarly, the Conditional Value-at-Risk (CVaR) at level ¢ can be defined as
A . 1 A +
CVaR.(2) = min t+ -E((z—1")|,
I3
which, assuming that F; (1) is continuous at A = VaR,(2), is equal to

CVaR,(?) = E (2|2 > VaR,(2)).

Note that the exact computation of CVaR is not possible except in the case of some
particular distribution functions F;. However, if the underlying distribution is discrete,
ie 2 = {w;}lY, and P(® = w;) = p;, then, the problem

(P) min CVaR,(—cx) (1a)
sit.Ax =b (1b)
x>0, (Ic)

where A € R™" b c R™, ¢ € 2 — R" is arandom variable and ¢ €]0, 1], can be
reformulated [13] as
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N

. 1
(Py) mint + gZ}Pim (2a)
1=
st.Ax =b (2b)
dx+t+n>0 Vie{l,...,N} (2¢)
x,n=>0 (2d)

Note that Problem (2) requires just one extra variable and one extra constraint
for each event in §2. This, together with the continuous advances in solving linear
programs [27], have made this kind of models very attractive. However, as we show
in our computational results, there are still many cases in which computing times can
be far too long, requiring many hours of computation time.

Note that Problem (2) is exactly the same problem solved when we use a sampled
approximation of CVaR for a continuous probability distribution. In this case, ¢’
is a sampled realization of the random variable ¢ and all samples are equiprobable

(Pi = )

3 Special formulations and special algorithms

These long computation times have led to several articles dealing with how to speed
up the problem-solving process of these specially structured LPs. In this section, we
present three such alternatives, which we selected because we feel they are represen-
tative of the different schemes proposed so far; nonetheless, this is by no means an
exhaustive list.

3.1 Improved formulations and general algorithms

A common agreement in the optimization community is that nowadays, if you only
want to solve a large LP, the chances are that the best available algorithm will be an
interior point algorithm specialized for LPs [27].

However, Problem (2), especially for alarge value of N, has a very special structure;
and, as was already noted by Ogryczak and Sliwinski [21] in the case of portfolio
problems, the dual version of (2) can be written as

(Dy) max y'b (3a)
1 d .
sty A+ Z Zl: pidict <0 (3b)
=

N
> piri=¢ Ge)

i=l1
0<xa<1 Viell,...,N}. (3d)
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Note that this problem has only m + 1 constraints (apart from bounds on variables),
and N +m + 1 variables. This observation is crucial, especially when we consider the
“observed running time of the simplex algorithm in real instances”, which according
to Dantzig [28], and later on Todd [29], was in the order of O(r) (where r is the
number of rows of the LP). Also more recently this parameter has been considered
to be closer to O(r+/c) [30] (where c is the number of columns in the problem).
This claim is meant to be neither as a precise statement, nor as an exact complexity
result, but rather as a practical observation. From this perspective, the results obtained
by Ogryczak and Sliwinski [21], are not surprising, but the impact on running time is
dramatic. We managed to replicate the results reported by them, in particular the results
that indicate that solving the dual problem using primal simplex greatly outperforms
all other alternatives, even when compared with interior point algorithms; this last
comparison will be reported in our computational results. Given these results, we will
use this dual formulation for all problems without trying the primal version.

3.2 Cut-event algorithm

An alternative to solving Problem (1) is to replace the representation of the convex
and continuous objective function with its (infinite) sub-differential approximation;
more precisely, we can solve problem

(O) min f(x) (4a)
s.t.x € X, (4b)
by solving the problem
(O")minz (5a)
st.x e X (5b)
2= f(xo) +d(x —x0) Vxo € X,d € 0f (x,), (5¢)

where df (x,) is the subdifferential set of f at x,. This problem is in general intractable,
but in the case of Problem (2), it is equivalent to

1
(CVaR) mint + —w (6a)
e
s.t.Ax =b (6b)
w+ D pilex+0)20 VCC(I,....N) (6¢)
ieC
x>0. (6d)

Although (6) still has an exponential number of constraints, it has the flavor of the
sub-tour elimination polytope (SEP) of the TSP, which can be solved quite efficiently
in theory and in practice, even on very large scale problems [31] by using standard
cut-generation methods. In the stochastic programming literature, this is known as the
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L-shaped method [23], and this idea was proposed by Kiinzi-Bay and Mayer [22] as
a way of minimizing the CVaR. However, taking into account the observations of the
previous section, in our implementation we solve the dual problem

(CutEv) max b’y (7a)
st.Ay+ D> ucEEIOP(C) <0 (7b)
ccll,....N}
D>, PO =1 (7¢)
Ccc{l,...,N}

1
>, nc=- (7d)

Ccc{l,...,N} €
u =0, (Te)

where P(C) = >, pi and E(¢|C) = ﬁ > .cc pic'. Note that this problem can
be solved by column generation, using primal simplex after each re-optimization step.
This method is what we call CutEv in our computational section.

Another very interesting feature of this approach is that at every stage (i.e. when
we solve a partial version of (7)) we obtain a lower bound of the original problem.
Moreover, taking the candidate (feasible) x*-solution, by evaluating CVaR,(—¢x™)
we obtain a valid upper bound for the problem; thus allowing us to stop our algorithm
if the proven gap is small enough. Besides, computing this value is a side effect of
finding the most violated column to be added to the problem.

3.3 Other specialized algorithms

Given the relevance of portfolio optimization, other specialized algorithms can be
found in the literature, and some of them have been made into commercial solvers.
For example Lim et al. [20] show a Proximal Bundle Algorithm [32] for this prob-
lem, and they also propose an exact three-phase algorithm to solve (1). Nevertheless,
the explanation of these algorithms is out of the scope of this paper. We have used
the Portfolio Safeguard [33] optimization package for comparison purposes in our
computational tests.

4 Primal-dual aggregation method (PDAgg)
4.1 Description of the algorithm

The central idea of our algorithms follow from the following observation: under the
assumption of N > m, almost all A variables in Problem (3), will be at one of
the bounds in any (extreme) optimal solution; i.e., they will have the same value.
Moreover, in our experiments, the number of A variables that are basic is very small,
usually up to three. Thus, if we could guess the different values these variables will
assume in the optimal solution, {Az}le , then, we could rewrite (3) using only n + 1
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constraints (apart from bounds), and m + K variables. Our algorithm starts out by
assuming that all A variables have the same value, obtains a candidate x*, evaluates
CVaR,(—cx™), and then identifies the set of A variables that support this value, and
allow the approximated problem to support the same set of values, and iterate the
process. Interestingly, this idea of forcing a set of A variables to have the same value
in the dual exactly corresponds in the primal to aggregate those set of scenarios into
a single scenario. This idea of forcing extra constraints (in our case, fixing many
A variables at the same value) into a large problem to solve it more efficiently was
proposed, in a different context, by Bienstock and Zuckerberg [34].

More precisely, let us consider N' = {Nk},f:1 a partition of {1,..., N}, and the
problem
(D)) maxy'b (8a)
| X
SEY A+ =D e <0 (8b)
e
k=1
K
Z DAk = € (80)
k=1
O0<x <1 Vkefl,...,K}, (8d)

where p; = P(Ny) = ZieNk pi and where & = E(¢|Ny) = ZieNk pi¢l. Note that
this problem can be seen as an aggregated version of (3) according to partition A/. In
fact, it is easy to see that for any partition A/ of {1, ..., N}, (8) is obtained from (3) by
adding the constraints A; = A;, Vi, j : ANy € N,i,j € Ni. Hence, Dy is a lower
bound of (3) for any partition A/ whatsoever.

On the other hand, given x € R", satisfying Ax = b, x > 0, problem

N

_ 1 -
(Dz) max — " zpikiclx (9a)
im
N
s piki=¢ (9b)
i=1
0<i<1 Vi=1,...,N 9c)

corresponds to the dual of (2) after fixing x = X. Hence, P, is an upper bound for (2),
and also for (3).
In summary, we have that

Dy = ZDy = Zp;
for any partition N of {1, ..., N} and for any X such that Ax = b, X > 0.

Note that (9) is simply a continuous knapsack problem, whose solution can be
computed in O(N log(N)) time using a greedy algorithm [35]. Moreover, any extreme
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optimal solution of (9) has at most three different values for A;: 0, 1 and a fractional
value (if required) to satisfy (9b). These values induce a partitionof {1, ..., N} ={i :
A =0} Ui - 4 = 1} UL < A € (0, 1)}, that we denote N7

Interestingly enough, if we take x as a dual optimal solution for (8b), and we have
that N¥ is representable in N (i.e., N can be obtained by unions of elements of
N), then z Dy = 2D, which means that we have solved (3). This is the key idea that
motivates our algorithm, presented in Algorithm 1.

Algorithm 1 PDAgg(6)

Require: Stopping gap § > 0

N < {{1,..., N}}

2: loop

3:  Solve (D). Let X be a dual-optimal solution of (8b) and DNy its objective value.

4 Solve (5);). Let \V: ;‘ be an induced partition of (5);), and Zp. its optimal objective value.
X

5 if DN T ZE} < § then

6: return Solution (X)

7 else

8 LetN(—{NiﬂNj:NiEN,NjEN;}.

Lemma 1 Algorithm 1 for § = 0 stops and returns the optimal solution of (2)

Proof We only need to prove that at every step the number of elements in the partition
N isstrictly increasing, thus bounding the number of iterations of the overall algorithm.
Let us denote L(D s, 1) the Lagrangian relaxation of D 5, obtained by penalizing
constraints (8b) by w. That is

K
LDy ) = max y'b+pu(=y'A—¢ 3 pihc®)
k=1

Let us suppose that the size of N does not increase after step 8, and let A* be the
optimal solution of (Dz). That is, the /\/;‘ obtained in step 4 is a coarser partition of
{1,..., N} than \V. Since the values of A* are constant within each set of the partition
given by ./\f;‘, it follows that A7 = A7 for all i, i’ € Ny, Yk = 1...K. Therefore, we

can define ):Z = )} for some i € N, and A* is feasible for L(D s, ) for any p > 0,
in particular for u = x. However, since X is the optimal dual of constraints (8b), then
A* is optimal for L(D s, X), and its value is equal to zp . and D, thus proving the
result. O

The efficiency of the proposed algorithm is based on three facts: Firstly, the aggre-
gated problem D 5, can be much smaller than the original problem. Secondly, the
optimal solution of Dj; has a few different values, resulting in a coarse refinement of
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N, which induce very small instances of D ;. And finally that problem Dj; can be
efficiently solved, even for a large N.

Note that, unlike most of the classical aggregation techniques for stochastic two-
stage problems [36,37], where the focus is to avoid the resolution of a subproblem
over all scenarios, we do perform a sub-problem optimization step looking at all
scenarios. Although in theory we could end up with a completely refined partition
(i.e. N = {1,..., N} and then solving (8) will be equivalent to solve the original
problem (3)), we will see in the computational results, that only a few iterations are
required to solve the problem, which means that for most instances the resulting final
partition N'* satisfies that |N*| << N.

4.2 Extension to other objective functions

In the previous section we described a new primal/dual method for handling general
linear programs with a CVaR objective function. However, the proposed technique
can also be adapted to other risk measures.

4.2.1 Weighted CVaR

A first natural extension is to consider objective functions that are positive combina-
tions of CVaR at different probability levels, i.e. to consider objective functions of the
form

R
fx) =D CVaR,, (—x),

r=I1

forReN,y e Rﬁ. Note that, by scaling arguments, it is enough to consider y that
satisfies Zf: 1 ¥r = 1; and consequently, f (x) is just another coherent risk measure
for ¢x. In this case, given samples {c"’}f\’:rl forr = 1,..., R, the problem we would
like to solve can be written as

R N"
(P)min >y, (1 + éZmrmr (10a)
r=1 i=1
st.Ax=b (10b)
X+t 4+nir>=0 Vref{l,...,R},ie{l,...,N"} (10c)
x,n >0, (10d)

and its corresponding dual can be written as

(DRymax y'b (11a)

R N
sty A+ Z :—r Zpir)\,-,c” <0 (11b)
r=1 "=l
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Nr
> pirkir =g Vre{l.....R) (11c)
i=1
0<iy<1 Vref{l,...,R},ie{l...N"}. (11d)

Note that this problem has almost the same structure as (3); and given a set of partitions
{N’}le, where N7 is a partition of {1, ..., N}, we can use the same upper/lower
bounds and method defined in Sect. 4; however, its complexity will increase linearly

in the number of components of the objective function.

4.2.2 Minimax objective function

Another classical objective function for portfolio optimization [38] is the so-called
minimax portfolio selection rule, which can be seen as a worst case optimization
approach. In this case, given a sample of objective coefficients {c’ }l.R= |» the minimax
objective function can be written as

(Pminimax) min ¢ (12a)
st.Ax =b (12b)
r+cx>0 Vie{l,...,N} (12¢)

x>0, (12d)

and its dual can be written as

(Dminimax) max ylb (13a)
1< .
sty A+ =D pidict <0 (13b)
&
i=1
N
> piri=e (13¢)
i=1
0<x <1 Viell,...,N}, (13d)
where ¢ = % and p; = % fori € {1,..., N}. Note that (13) has exactly the same

form as (3), which is why we can directly use our proposed algorithm.

4.2.3 Mean-absolute deviation (MAD) objective functions

The Mean-Absolute Deviation was introduced by Konno and Yamazaki [39] in the
context of portfolio optimization and can be seen as an L approximation of the L,
model by Markowitz [7]. The MAD objective function is E(|¢x — E(¢x)|). If we
assume a sample {c'} 1N= | with probabilities p; of the objective coefficients, the related
optimization problem can be stated as
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(Pviap) min > pi (nf +n;7) (14a)
i=1

st.Ax =D (14b)

nt—n +cx—1=0 Vie{l,...,N} (14c)

t—cx=0 (14d)

x,nT,n” >0, (14e)

where ¢ := Zf\’: | pic’ . Its dual can be written as

(Dmap) max y'b (15a)
N
s.t.y’A—ADE—i—Zp,-ci <0 (15b)
i=1
N
D piki=1o (15¢)
i=1
—1<an<1 Vie{l,....N}. (15d)

Unfortunately, Problem (15) does not have the same form of Problem (3), but we can
use a similar trick to get upper and lower bounds for an aggregated problem. More
precisely, given N = {Nk},{(=1 a partition of {1, ..., N}, x satisfying Ax = b, x > 0,
and substituting A,, we can define

(Dypap,Ay) max y'b (16a)
sLyA+§jMM#—ago (16b)
k=1
—l<am <l Vke{l,...,K), (16¢)
and

N
(Dya,2) max > wipi (¢ = ') 7 (172)

i=1
&LQEMSIWGUW”M. (17b)

Using the same arguments as in Sect. 4, it is easy to prove that Problem (16) is
a lower bound of Problem (15), and that Problem (17) is an upper bound of Prob-
lem (15). Furthermore, by its structure, any optimal solution to (17) can have at most
two different values for A;, i € {1,..., N}; hence, the same refinement arguments
apply, while the complexity of solving Problem (17) is just O(N).
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5 Computational results
5.1 Definitions and settings

In order to benchmark the performance of the proposed methodology, we implemented
the following algorithms and techniques to solve Problem (2):

CPX: We formulated Problem (2) and solved it using the CPLEX Barrier algorithm.
CPX-Dual: As suggested in [21], we formulated the dual of the problem, detailed
in (3) and solved this dual formulation using the Primal Simplex algorithm.

CutEv: Cut-event formulation, presented in (7) and solved using column generation.
PDAgg: Our proposed methodology, presented in Algorithm 1.

We compared previous methodologies using two set of instances: general LP prob-
lems and a set of large portfolio problems. For general LP problems, we used the
Netlib [26] LP problem collection. In order to introduce uncertainty into the objective
function, we modified the original objective function by multiplying independently
each coefficient of the objective function by a random variable x. We tested two
random variables:

— x ~ UJ0, 1], i.e. x is a uniform distribution in [0,1].
| N1, 0.4) with probability 0.95
exp(10) otherwise
normal distribution; otherwise, it follows an exponential distribution. This is one
of the distributions used in [19].

, 1.e. in 95% of the cases, x follows a

Furthermore, we tested different risk levels for the CVaR, namely ¢ € {0.001, 0.01,
0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99 and 0.999}, and ten different sample sizes ||
from 10.000 to 100.000 samples in increments of 10.000. This gives us a total of 200
configurations for each Netlib instance.

All our code was implemented using the C programming language. All runs where
made using a single thread with an address space limit and data limit of 2Gb and a
20-h running time limit. The machines were running Linux 2.6.18 under x86_64 archi-
tecture, with two quad-core Intel® Xeon® E5620 processors and with 48 Gb of RAM.
To obtain better time measurements, the machines were configured (in BIOS) with
the following technologies disabled: Intel® Turbo Boost Technology, Intel® Hyper-
Threading Technology, and Intel® Virtualization Technology (VT-x). These settings
allowed us to run up to eight instances in a machine without (much) interference
between processes.

A final detail is the termination condition of the algorithm. Since both CutEv and
PDAgg provide an upper and lower bound for the problem at each iteration, we stopped
whenever the relative gap between these bounds was less than 107, The value 10~°
was chosen because it is the default reduced cost tolerance for the CPLEX simplex
algorithm, which should make all approaches comparable.
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Table 1 Comparison of PDAgg and CutEv on Netlib instances under different stopping criteria

# Inst. PDAgg CutEv
102 1074 106 102 104 1076
Global 16,600 0.392 0.776 1.017 0.459 1.507 2.714
>1s 9,541 1.360 3.663 5.293 1.555 6.949 14.900
>10s 5411 2.828 10.365 15.710 2.946 19.276 48.111
>100s 2,303 5.013 30.894 50.716 4.027 51.408 160.112
>1,000s 573 9.471 114.207 194.492 5.025 176.010 680.784

5.2 Overall comparisons

Table 3 (in Appendix) shows the geometric mean [40] running time between the 200
configurations for each instance. In this table, we only include the 56 instances that
can be solved by the four algorithms within our prescribed limits.

It can be seen that formulating the full problem and solving it using the CPLEX
barrier algorithm (Column CPX in the table) is the slowest, with an average run-
ning time of 29.957 s. Also, we can see that the observed behavior of CPX-dual for
portfolio problems [21] also applies to general CVaR minimization problems, with
an average running time of 8.279 s. Additionally, it can be seen that our algorithm
(Column PDAgg) and the cut-event formulation (Column CutEv) are much faster
than formulating the full problem, with an average of 0.373 and 1.127 s respectively.

5.3 Comparing PDAgg and CutEv algorithms

Since these last two algorithms are much faster than both algorithms for the mono-
lithic formulation, we will focus on the results of PDAgg and CutEv. In this case, a
total of 83 Netlib’s instances were solved by both algorithms within our prescribed
limits. We only excluded the instances 80bau3b, fit2p, fit2d, shipl2l
and shipl2, because some configuration of these problems exceed the memory limit
of 2Gb.

5.3.1 The effect of the stopping criteria

In Table 1 we show the geometric mean running time of both methods over the 16,600
problems solved by each algorithm, under different stopping criteria (namely, arelative
gap less than 1072, 10~* and 10~°). In order to improve the accuracy of the results,
we also show these averages over subsets of problems in which at least one of the
algorithms requires more than 1, 10, 100 and 1,000 s to achieve the final gap of 107°.

As we can see, both methods require a similar time to solve instances with a gap of
102 with a slight advantage for the CutEv algorithm, especially on the hardest prob-
lems. However, our algorithm outperforms the cut-event approach when we require
more precision.
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5.3.2 The effect of the sampling size and the risk parameter

Figure 1 shows the geometric mean running time of both algorithms on the instances
grouped by different levels of ¢ and by different sample sizes. It can be seen that
our algorithm outperforms the cut-events approach, especially when the number of
samples increases; moreover, it is clear that the growth rate of the running time with
respect to N for PDAgg is smaller than for CutEv, which is an indicator of a better
scalability (in terms of size) of our algorithm. Something interesting can be seen when
we study the effect of & on the running time. Both algorithms are slower for small values
of ¢, and faster for large values of ¢. This was somewhat unexpected, and this may be
because for larger ¢ values, we are closer to optimizing the plain expected value. But
again, it must be noted that our algorithm greatly outperforms CutEv especially for
small values of ¢ (which is incidentally the most common case), especially in problems
taken from the risk-averse optimization literature.

5.3.3 Portfolio problems

The purpose of this second set of instances is to compare our algorithm with other
specialized algorithms for portfolio optimization. A large portfolio problem was con-
structed following [41]: we used the monthly closing price of 4,553 stocks from Janu-
ary 2008 to December 2012, obtained using CRSP Monthly Stock data from Wharton
Research Data Service. From this set, we randomly selected a sample of 500 stocks
and we computed the expected returns and the covariance matrix using the method-
ology described in [42]. Using these data, we generated 100, 000 scenarios from a
multivariate normal distribution with the corresponding parameters.

For this experiment, we additionally benchmarked our approach against the algo-
rithm of [20], implemented in AORDA Portfolio Safeguard [33]. The experiments
with this last algorithm was run in a similar architecture but in a Microsoft Windows
environment, and with the same stopping criteria (precision of 10~).

Table 2 shows the computation times of these instances. The results are similar
to those obtained using Netlib’s instances. For this particular problem, the cut-event
formulation and the specialized algorithm are faster than our algorithm for ¢ equal
to 0.25, 0.5 and 0.75. However, our algorithm outperforms the other two algorithms
for more extreme values of e. This is particularly interesting because for portfolio
problems, the commonly desired value of ¢ is near to zero, while our algorithm is
more than 10 times faster than the other algorithms.

5.3.4 Detailed results for PDAgg

Table 4 (in Appendix) shows the running details of our algorithms on the portfolio
problems and on the 83 Netlib instances using 100,000 scenarios. We present the
geometric mean running time (in seconds) required to solve the problem, the size of
the final partition (column |N|) and the average number of iterations required (column
Iter), among the different distributions and risk-levels. We also include the size of each
original problem, in terms of the number of variables, constraints, and the number of
non-zero coefficients of the objective function, which represent the dimension of the
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Fig. 1 Geometric mean running times of PDAgg and CutEv on Netlib instances. aTime versus ¢ b Time
versus N

sample space. It can be seen that the efficiency of our algorithm is partially accounted
for by the small number of iterations required, which results in a partition of small
size, hence each sub-problem can be solved quickly. In fact, instead of solving a
problem with 100,000 scenarios, in the end our algorithm had a geometric average
of 5.97 iterations using only 43.87 aggregated scenarios. It is worth noting that for
several problems, particularly the problems with a low-dimensional sample space, the
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Table 2 Computation times on

portfolio instances PDAgs CutEv AORDA
0.001 5.92 85.07 54.51
0.01 7.93 99.22 98.48
0.05 24.09 103.56 113.39
0.10 117.14 102.28 125.91
0.25 561.91 106.50 144.32
0.50 584.92 136.98 177.12
0.75 465.65 127.21 107.55
0.90 28.69 47.07 41.91
0.99 2.60 7.09 9.11
0.999 0.43 2.28 1.84

algorithm requires only two iterations to solve problem, obtaining the optimal partition
of the scenarios in a few seconds.

6 Conclusions

We have shown a primal-dual aggregation technique to exactly solve CVaR minimiza-
tion problems under discrete probability distributions, with a very large number of
scenarios. This framework also comprises the sampled approximation of CVaR min-
imization problems under arbitrary probability distributions. Computational experi-
ments show that this method is much more efficient in terms of running time than
other general and specialized algorithms for this problem. Moreover, our algorithm
showed a better scalability on the number of scenarios than the competing algorithms,
and has the advantage of handling general LP constraints. This might be due because
the optimal solution to these problems usually requires a far smaller number of repre-
sentative scenarios to prove optimality. An interesting open question is how to find a
better selection of these representative scenarios, which might allow us to obtain even
smaller aggregations, in order to further improve the performance of this algorithm.

We would also like to note that this primal-dual aggregation technique could also
be applied to solve some other special-structured two-stage stochastic programming
problems, opening a new direction for future research. Finally, the proposed framework
(as well as the cut-event approach) can be further expanded in order to deal with
problems having several CVaR constraints and/or objective functions, thereby further
extending its applicability.
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Appendix: Detailed tables of results

See Tables 3 and 4.

Table 3 Results of all algorithms on running Netlib instances

Name PDAgg CPX-Dual CutEv CPX
25tv47 2.979 227.412 7.897 2823.874
adlittle 1.773 45.729 9.471 66.804
afiro 0.045 0.413 0.162 1.364
agg?2 2.076 116.208 31.119 295.196
agg3 1.073 88.085 11.633 303.347
bandm 0.996 33.523 5.044 127.979
beaconfd 0.212 6.993 0.401 45.023
boeing1 3.088 82.197 55.529 741.207
boeing2 0.769 19.458 5.040 108.206
bore3d 0.080 9.219 0.283 21.642
brandy 0.058 0.377 0.161 1.775
capri 0.371 2.358 1.436 6.860
degen2 3916 668.789 19.976 882.728
e226 1.837 62.300 18.394 187.984
etamacro 0.242 11.452 0.431 44.608
ffff800 0.250 1.921 0.427 3.235
finnis 1.042 69.745 2.186 1040.445
ganges 0.557 8.265 3.468 76.688
greenbea 10.656 89.550 6.473 1203.021
greenbeb 4.576 127.795 4.441 1046.617
grow15 0.188 3.632 0.542 22.783
grow22 0.442 5.593 0.922 41.402
grow?7 0.171 1.347 0.406 6.174
israel 0.380 19.627 1.265 62.674
kb2 0.051 0.382 0.145 1.479
lotfi 0.110 2.053 0.231 2.758
nesm 2.366 190.897 2.936 5050.060
perold 0.452 3.215 0.582 3.774
pilot 8.530 39.183 15.557 30.690
pilot.ja 0.848 6.457 1.124 12.999
pilot.we 18.668 316.110 64.417 227.635
pilot4 0.205 1.952 0.325 2.855
recipe 0.068 3.260 0.256 17.871
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Table 3 continued

Name PDAgg CPX-Dual CutEv CPX

scl05 0.036 0.227 0.136 0.872
sc205 0.039 0.233 0.141 0.915
sc50a 0.034 0.175 0.134 0.745
sc50b 0.035 0.174 0.134 0.846
scagr25 0.614 159.899 1.712 640.479
scagr7 0.179 24.360 0.458 55.400
scfxml 0.078 3.024 0.197 4.568
scfxm2 0.119 5.901 0.270 12.914
scfxm3 0.172 9.188 0.364 25.703
scorpion 1.130 54.413 3.756 392.443
scsdl 9.582 225.561 47.585 3432.556
sctapl 5.742 386.091 110.350 865.274
seba 1.088 46.020 3.502 411.507
sharelb 0.130 2.587 0.284 14.688
share2b 0.188 3.500 0.346 19.146
stair 0.112 0.731 0.267 1.365
standata 0.066 0.985 0.181 3.114
standgub 0.066 1.030 0.184 3.074
standmps 0.057 1.001 0.183 4.692
stocforl 0.164 3.318 0.401 11.764
tuff 0.058 1.080 0.181 1.861
vtp.base 0.058 1.078 0.163 2.418
woodlp 0.240 5.645 0.483 9.805
woodw 0.627 5.983 0.856 14.044
Total 0.373 8.279 1.127 29.957

Table 4 Results of PDAgg algorithm on Netlib and portfolio instances with 100,000 scenarios

Name Ncols Nrows Obj Time # Sets # Iter
25fv47 1571 821 727 4.61 271.35 9.70
adlittle 97 56 82 4.03 3445.20 15.60
afiro 32 27 5 0.11 4.60 2.90
agg 163 488 131 1.18 598.60 11.45
agg?2 302 516 231 5.24 1566.20 12.80
agg3 302 516 231 243 727.30 11.15
bandm 472 305 165 2.18 1013.45 12.95
beaconfd 262 173 101 0.46 25.00 5.90
bnll 1175 643 1008 8.11 739.40 11.10
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Table 4 continued

Name Ncols Nrows Obj Time # Sets # Iter
bnl2 3489 2324 2125 25.55 930.80 12.45
boeing1 384 351 380 6.58 1840.40 13.45
boeing2 143 166 143 1.84 1124.25 13.00
bore3d 315 233 96 0.17 2.00 2.00
brandy 249 220 2 0.12 3.00 2.50
capri 353 271 19 0.77 1592.75 11.95
cycle 2857 1903 602 38.64 6358.50 18.90
czprob 3523 929 3504 539.68 3600.20 15.30
d2q06¢ 5167 2171 3257 381.67 4659.35 16.55
d6cube 6184 415 6184 215.99 1133.45 13.15
degen2 534 444 471 8.23 1298.25 12.40
degen3 1818 1503 1584 83.53 2448.45 13.65
€226 282 223 189 4.11 2374.20 14.25
etamacro 688 400 80 0.44 18.05 5.15
fffff800 854 524 8 0.45 78.15 8.30
finnis 614 497 404 2.13 163.90 9.95
fitld 1026 24 1026 2.78 52.40 6.40
fitlp 1677 627 1026 1.77 9.00 4.00
ganges 1681 1309 109 1.16 538.10 10.10
greenbea 5405 2392 622 11.62 57.65 6.15
greenbeb 5405 2392 622 5.35 17.65 4.80
growl5 645 300 45 0.29 74.75 4.50
grow22 946 440 66 0.66 53.95 6.70
grow?7 301 140 21 0.38 90.05 7.70
israel 142 174 89 0.82 324.50 10.65
kb2 41 43 5 0.12 3.80 2.80
lotfi 308 153 8 0.28 21.20 7.05
maros 1443 846 392 8.99 1852.15 14.35
maros-17 1443 846 392 18.07 72.30 5.80
modszk1 1620 687 990 4.87 411.80 11.70
nesm 2923 662 700 3.16 20.85 5.10
perold 1376 625 8 0.50 2.70 2.35
pilot 3652 1441 53 9.28 967.45 11.90
pilot.ja 3652 1441 53 0.94 3.20 2.60
pilot.we 2789 722 92 30.72 6773.30 18.00
pilot4 1000 410 4 0.28 5.85 3.70
pilot87 4883 2030 652 43.59 798.20 11.65
pilotnov 2172 975 72 3.93 1974.05 13.50
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Table 4 continued

Name Ncols Nrows Obj Time # Sets # Iter
portfolio 500 1 500 30.29 7596.30 17.80
recipe 180 91 89 0.16 2.00 2.00
sc105 103 105 1 0.09 2.00 2.00
sc205 203 205 1 0.09 2.00 2.00
sc50a 48 50 1 0.08 2.00 2.00
sc50b 48 50 1 0.09 2.00 2.00
scagr25 500 471 475 1.26 73.50 6.50
scagr’ 140 129 133 0.42 17.65 4.85
scfxm1 457 330 23 0.16 3.50 2.75
scfxm2 914 660 46 0.21 3.60 2.80
scfxm3 1371 990 69 0.28 4.05 2.90
scorpion 358 388 282 2.33 782.95 12.65
scrs8 1169 490 847 6.29 1209.60 11.10
scsdl 760 77 760 26.98 2800.65 15.00
scsd6 1350 147 1350 84.83 3429.45 15.10
scsd8 2750 397 2750 72.07 1609.50 13.05
sctapl 480 300 360 15.91 2284.55 13.35
sctap2 1880 1090 1410 37.58 1534.25 13.05
sctap3 2480 1480 1860 55.98 1805.80 13.20
seba 1028 515 522 243 268.60 9.80
sharelb 225 117 31 0.29 15.40 6.15
share2b 79 96 36 0.43 22.40 7.65
shell 1775 536 1344 6.12 97.05 9.90
ship041 2118 402 2118 8.82 146.10 9.45
shipO4s 1458 402 1458 5.76 140.55 9.30
ship08l 4283 778 4283 27.14 584.95 11.10
ship08s 2387 778 2387 16.21 518.90 10.60
stair 467 356 1 0.16 2.00 2.00
standata 1075 359 7 0.14 3.70 2.85
standgub 1184 361 7 0.14 3.70 2.85
standmps 1075 467 7 0.11 2.00 2.00
stocforl 111 117 27 0.39 51.40 7.90
stocfor2 2031 2157 1149 2.60 19.50 4.65
tuff 587 333 3 0.11 2.00 2.00
vtp.base 203 198 6 0.13 3.30 2.65
woodlp 2594 244 1 0.28 2.00 2.00
woodw 8405 1098 4 0.68 9.60 4.05
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