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a b s t r a c t 

The maximum capture problem with random utilities seeks to locate new facilities in a competitive 

market such that the captured demand of users is maximized, assuming that each individual chooses 

among all available facilities according to the well-know a random utility model namely the multinomial 

logit. The problem is complex mostly due to its integer nonlinear objective function. Currently, the most 

efficient approaches deal with this complexity by either using a nonlinear programing solver or refor- 

mulating the problem into a Mixed-Integer Linear Programing (MILP) model. In this paper, we show how 

the best MILP reformulation available in the literature can be strengthened by using tighter coefficients in 

some inequalities. We also introduce a new branch-and-bound algorithm based on a greedy approach for 

solving a relaxation of the original problem. Extensive computational experiments are presented, bench- 

marking the proposed approach with other linear and non-linear relaxations of the problem. The com- 

putational experiments show that our proposed algorithm is competitive with all other methods as there 

is no method which outperforms the others in all instances. We also show a large-scale real instance 

of the problem, which comes from an application in park-and-ride facility location, where our proposed 

branch-and-bound algorithm was the most effective method for solving this type of problem. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

In recent years, competitive facility location models have re-

ceived considerable attention both due to their interesting theo-

retical aspects and their practical applications. These models ex-

tend conventional facility location models to a more complex sce-

nario, in which (a) companies compete for their market share and

(b) the choices of independent decision makers, such as customers,

are considered. As an example, we can think of a company that

wants to locate r new supermarkets in a geographical zone where

some supermarkets are already located (the competitors). The

competitive facility location problem consists of choosing, from a

given set of available locations, the locations for these r new facil-

ities such that the demand captured by them (i.e. market share) is

maximized. 

This problem can be traced back to Hotelling ’s (1929) opti-

mal location of two competing facilities on a line segment, and it
∗ Corresponding author. Tel.: +56 223311351; fax: +56 223311351. 

E-mail addresses: afreire@ime.usp.br (A.S. Freire), eduardo.moreno@uai.cl 

(E. Moreno), wilfredo.yushimito@uai.cl (W.F. Yushimito). 

i  

a  

p  

1  

t  

http://dx.doi.org/10.1016/j.ejor.2015.12.026 

0377-2217/© 2015 Elsevier B.V. All rights reserved. 
as later embedded within the location theory, initially by Slater

1975) and further developed by Hakimi (1983) . 

In general, the literature considers that customers choose

mong different alternatives based on a given utility function that

epends on a set of facility attributes (e.g., distance, transporta-

ion costs and waiting times, among others). The first determin-

stic model was proposed by ReVelle (1986) , in which customers

hoose the closest facility among different competitors. However,

hese models imply an “all or nothing” assignment, in which the

emand of a given point is assigned entirely to one facility. An al-

ernative approach is proposed in the gravity-based model ( Huff,

964; Reilly, 1931 ), in which the demand captured by a facility

s proportional to the “attractiveness” of the facility and inversely

roportional to a power of the distance. Drezner and Eiselt (2002)

nd Berman, Drezner, Drezner, and Krass (2009) provide a compre-

ensive review of these different models. 

Another alternative approach to the “all or nothing” assignment

s to estimate the market share obtained by each facility through

 random utility model. In random utility models (e.g., logit or

robit models; see McFadden, 1973 or Ben-Akiva and Lerman,

985 ), the utilities of economic agents are essentially derived from

heir preferences among a set of discrete options. In this case, the

http://dx.doi.org/10.1016/j.ejor.2015.12.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.026&domain=pdf
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roblem can be stated as follows: given a set of customers and

heir respective demands, a set of open facilities (the competitors),

nd a set of available locations, the problem is to locate r new fa-

ilities such that the expected market share captured by the new

acilities is maximized, where the market share captured by each

elected facility is estimated through a random utility model (e.g.

ogit). This problem is referred to as the maximum capture prob-

em with random utilities (or MCRU problem, for short) and it

as first introduced by Benati and Hansen (2002) with the multi-

omial logit model (MNL) as the underlying random utility model.

ecent applications for this model includes locating schools ( Haase

 Müller, 2012 ), preventive healthcare facilities ( Haase & Müller,

015; Zhang, Berman, & Verter, 2012 ), and siting park-and-ride fa-

ilities ( Aros-Vera, Marianov, & Mitchell, 2013 ). 

Since the multinomial logit model is nonlinear by nature, mod-

ling the MCRU problem usually results in nonlinear integer pro-

raming models, which in general are difficult to solve. Benati

nd Hansen (2002) have proposed different approaches to address

he problem, namely concave programing, integer fractional pro-

raming and submodular maximization. The computational analy-

is presented in the cited paper shows that the concave program-

ng, which is basically a branch-and-bound algorithm with a con-

ave relaxation of the problem as dual bound, behaves better than

he other two approaches. 

Alternatively, equivalent Mixed-Integer Linear Programing 

MILP) formulations have been proposed by Benati and Hansen

20 02) , Haase (20 09) , Aros-Vera et al. (2013) , and Zhang et al.

2012) . These formulations were recently evaluated by Haase and

üller (2014) to provide a computational comparison of them,

eing the model by Haase (2009) the most efficient in practice. 

In this paper, we show how the MILP model introduced by

aase (2009) can be strengthened by using tighter coefficients in

 class of inequalities. We also introduce a greedy algorithm for

olving a relaxation of the MCRU problem, which is embedded

nto a branch-and-bound (B&B) algorithm to compute dual bounds.

he success of a B&B algorithm relies basically on finding a good

hreshold between the quality of the bounds and the computa-

ional effort needed to calculate them. In fact, the obtained dual

ounds are not necessarily sharper than the ones given by the

nown linear and nonlinear formulations of the problem, but they

an be calculated much faster than the others. This allows to ex-

lore more nodes of the B&B tree, which in many cases is more

ffective than spending too much time computing better bounds.

oreover, the proposed B&B algorithm can be easily implemented

nd does not make use of any external solver, while all the other

ethods considered here do. 

To evaluate the algorithm, extensive computational results are

btained for instances from three different datasets, namely the

flLib repository, the randomly generated instances introduced

y Haase and Müller (2014) , and a relatively large size instance

82341 customers and 59 available locations) that comes from a

eal application in location of park-and-ride facilities in New York

ity ( Holguín-Veras, Reilly, Aros-Vera, Yushimito, & Isa, 2012 ). The

ethods considered here for comparison are the concave program-

ng approach introduced by Benati and Hansen (2002) , the MILP

ormulation introduced by Haase (2009) (using the tighter coef-

cients proposed in this work) and the proposed B&B algorithm.

esults show that the proposed B&B algorithm is competitive with

ther available methods on all instances, and the most efficient

ethod for solving the large real instance mentioned above. 

The remainder of this paper is organized as follows. In

ection 2 , we present the notation and definitions used through-

ut this paper. In Section 3 , we present some mathematical for-

ulations for the MCRU problem found in the literature and show

ow the MILP model introduced by Haase (2009) can be strength-

ned by using tighter coefficients in a class of inequalities. In
ection 4 , we introduce a new B&B algorithm for the MCRU prob-

em. The computational results are presented in Section 5 . Finally,

n Section 6 we draw some conclusions and present opportunities

or future work. 

. Problem description 

In this section, we give a formal description of the MCRU prob-

em. Before describing the problem itself, we first explain the be-

avioral rationale underlying the customers’ decisions, in which

he market share captured by a particular facility is based on the

references of the customers, which results in a choice probability

f selecting a particular facility. 

.1. Behavioral rationale and choice probability 

Let S be a set of customers and H be a set of open facilities.

ach customer s ∈ S receives a utility ˜ u sl for choosing the facility

 ∈ H . Assuming that customers behave rationally, each customer

elects the facility that provides the highest utility value. That is, a

ustomer s ∈ S chooses a facility l ∈ H if ˜ u sl ≥ ˜ u sh , ∀ h ∈ H. 

In random utility theory, the utility ˜ u sl obtained by customer s

 S choosing a facility l ∈ H has two components: a deterministic

art v sl and a random term εsl , such that ˜ u sl = v sl + εsl . The deter-

inistic part is typically referred to as the systematic component,

ecause it is composed of a set of observable attributes (e.g., dis-

ance and time), whereas the random components represent the

on-observable attributes. The joint density of the random vector

s = { εs 1 , . . . , εsl } , denoted by f ( εs ), allows us to state the proba-

ility of choosing an alternative. According to McFadden (1973) ,

henever the elements in εs are identically and independently dis-

ributed, they have equal variability among cases, and f ( εs ) follows

 Generalized Extreme Value (GEV) distribution (i.e., Gumbel dis-

ribution), the model is referred to as the multinomial logit model,

nd the probability that a customer s selects a facility l from the

iven set H of open facilities is given by the following equation: 

p sl = 

e v sl 

∑ 

h ∈ H 
e v sh 

(1) 

.2. Problem description 

In the MCRU problem, it is given a set L of available locations, a

et A of open facilities (the competitors) and a set S of customers.

or simplicity, we sometimes refer to an available location l , where

 new facility can be located, as a facility itself. For each customer

 ∈ S , it is given a positive demand d s and a utility v sl for choosing

he facility located in l ∈ L ∪ A . The objective is to choose a subset

 

∗ ⊂ L of r locations where new facilities can be located, such that

he expected demand captured by the new facilities is maximized,

hich is given by 
 

s ∈ S 

∑ 

l∈ L ∗
d s p sl (2) 

ccording to (1) , the probability that a user s ∈ S chooses a facility

 ∈ L ∗ is given by 

p sl = 

e v sl 

∑ 

h ∈ L ∗∪ A e v sh 
(3) 

Note that, w.l.o.g., we can assume that there is a single open

acility (i.e., | A | = 1 ). If there is more than one open facility (i.e.,

 A | > 1), we can represent them as a single facility a such that

 sa = log ( 
∑ 

i ∈ A e v si ) . Hence, for simplicity, we assume that there is

 single open facility a . Note that higher values of v sa represent a

roblem with stronger incumbent competitors. 
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Given a subset H ⊂ L of open facilities, let φ( H , s , l ) be the ex-

pected demand of customer s captured by the facility located in l ,

which is given by 

φ(H, s, l) = d s 
e v sl 

∑ 

h ∈ H∪{ a } e v sh 
= 

d s ∑ 

h ∈ H∪{ a } e (v sh −v sl ) 
(4)

Because the total demand is split between the open facilities, we

have 
∑ 

s ∈ S 

∑ 

l∈ H∪{ a } 
φ(H, s, l) = 

∑ 

s ∈ S 
d s (5)

Therefore, the MCRU problem seeks for a subset L ∗ ⊂ L of r loca-

tions that maximizes 
∑ 

s ∈ S 
∑ 

l∈ L ∗ φ(L ∗, s, l) or, equivalently, mini-

mizes �s ∈ S φ( L ∗, s , a ). In the second case, we are minimizing the

expected demand captured by the competitor a . 

3. Mathematical formulations for the MCRU problem 

In this section, we present some approaches based on math-

ematical formulations to solve the MCRU problem, namely the

concave programing approach introduced by Benati and Hansen

(2002) and the MILP formulation introduced by Haase (2009) . Fi-

nally, we show how this last formulation can be strengthened by

using tighter coefficients in a class of inequalities. 

3.1. A concave programing approach 

Benati and Hansen (2002) have proposed different approaches

to solve the MCRU problem, namely concave programing, inte-

ger fractional programing and submodular maximization, being the

first one the most promising approach, according to the computa-

tional results presented in the cited paper. We now present the

main idea behind the concave programing approach. 

Consider a binary variable x l , for each l ∈ L , with the interpre-

tation that x l = 1 if and only if a new facility is located in l (i.e.,

x is the characteristic vector of the solution). A natural formula-

tion for the MCRU problem can be obtained by simply rewriting

the statement of the problem using the x variables, which results

in the following integer nonlinear programing model: 

max 
∑ 

s ∈ S 

∑ 

l∈ L 
d s 

e v sl x l 
e v sa + 

∑ 

h ∈ L e v sh x h 

( INLP MCRU ) s.t. 
∑ 

l∈ L 
x l = r (1.1)

x l ∈ { 0 , 1 } , ∀ l ∈ L (1.2)

In Benati and Hansen (2002) it is shown that the objective

function of the continuous relaxation of (INLP MCRU ) is concave. The

authors use this fact to calculate an upper bound by relaxing the

integrality constraints of (INLP MCRU ) and then solving the problem

by gradient optimization. To solve the original problem, this up-

per bound calculation is embedded into a branch-and-bound algo-

rithm. 

3.2. Haase’s MILP formulation 

As shown in the previous section, a natural formulation for the

MCRU problem results in a nonlinear model. Alternatively, research

efforts have been made on finding equivalent MILP formulations.

Recently, Haase and Müller (2014) provided a computational com-

parison of the different MILP formulations in the literature, con-

cluding that the formulation introduced by Haase (2009) outper-

forms the other models studied. In this section, we present the

MILP formulation introduced by Haase (2009) for the MCRU prob-

lem and we show how one of its constraints can be strengthened. 
The variables x are used with the same interpretation as in

INLP MCRU ) and we introduce a variable p sl , for each s ∈ S and l

 L ∪ { a }, to represent the probability that the customer s chooses

he facility located in l . To simplify the presentation of the formu-

ation, we define the constant γsl = e (v sl −v sa ) , for each l ∈ L and s

 S . We now present the MILP formulation introduced by Haase

2009) . 

max 
∑ 

s ∈ S 

∑ 

l∈ L 
d s p sl 

( MILP MCRU ) s.t. γsl p sa ≥ p sl , ∀ s ∈ S, ∀ l ∈ L (2.1)

p sl ≤
γsl 

1 + γsl 

x l , ∀ s ∈ S, ∀ l ∈ L (2.2)

∑ 

∈ L ∪{ a } 
p sl = 1 , ∀ s ∈ S (2.3)

 

l∈ L 
x l = r, (2.4)

p sl ≥ 0 , ∀ s ∈ S, ∀ l ∈ L ∪ { a } (2.5)

 l ∈ { 0 , 1 } , ∀ l ∈ L (2.6)

Considering the objective function, we see that constraints (2.1)

re satisfied with equality when x l = 1 . Thus, 

p sl = γsl p sa = 

e v sl 

e v sa 
· e v sa 

∑ 

h ∈ L e v sh x h + e v sa 
= 

e v sl 

∑ 

h ∈ L e v sh x h + e v sa 
, 

hich is precisely the probability that a customer chooses the fa-

ility located in l , according to Eq. (3) . 

Constraints (2.2) state that the probability of a customer choos-

ng a facility located in l can be positive only if the respective lo-

ation is chosen (i.e., if x l = 0 , then p sl = 0 for each s ∈ S ). 

.3. Strengthening the Haase’s MILP formulation 

In constraints (2.2) , we can replace the coefficient of x l by any

onstant greater than or equal to the maximum value that p sl can

chieve. Aros-Vera et al. (2013) proposed an analogous formulation,

n which constraints (2.2) are presented with the constant 1 rather

han 

γsl 
1+ γsl 

, which is clearly a weaker formulation. We now show

hat constraints (2.2) can be strengthened even further. 

emma 1. Given a customer s ∈ S and a location l ∈ L , let L ( s , l ) ⊂ L

e a subset of r locations such that l ∈ L ( s , l ) and v sh ≤ v st for each

 ∈ L ( s , l ) �{ l } and t ∈ L �L ( s , l ) . Then, L ( s , l ) is a subset of r locations

hat maximizes the probability that the customer s chooses the facility

ocated in l. 

roof. In contrast, suppose that H ⊂ L is a subset of r locations con-

aining l such that e v sl ∑ 

h ∈ H e 
v sh 

> 

e v sl ∑ 

t∈ L (s,l) e 
v st 

. Thus, there are locations

 ∈ H and t ∈ L ( s , l ) such that v st > v sh , t ∈ L ( s , l ) �{ l } and h ∈ L �L ( s ,

 ), which is in contradiction to the Lemma’s hypothesis. �

As a consequence of Lemma 1 , e v sl 

e v sa + ∑ 

h ∈ L (s,l) e 
v sh 

is the sharpest

pper bound on the value that variable p sl can achieve. Thus, re-

lacing 
γsl 

1+ γsl 
by 

γsl 
1+ ∑ 

h ∈ L (s,l) γsh 
in constraints (2.2) leads to a formu-

ation for the MCRU problem which is stronger than (MILP MCRU ). 

Below, we give an example in which replacing 
γsl 

1+ γsl 
by

γsl 
1+ ∑ 

h ∈ L (s,l) γsh 
in constraints (2.2) produces a strictly smaller value

n the objective function of the linear relaxation of (MILP ). 
MCRU 
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Table 1 

Row s column l contains v sl . 

l 1 l 2 l 3 l 4 a 

s 1 2 1 2 1 2 

s 2 2 2 1 1 2 

s 3 2 1 1 2 2 

s 4 1 2 2 1 2 

Table 2 

Row s column L i , j contains 
∑ 

l∈ L i, j 
φ(L i, j , s, l) . The last row 

contains the total expected demand captured by the facil- 

ities in L i , j , which is given by 
∑ 

s ∈ S 
∑ 

l∈ L i, j 
φ(L i, j , s, l) . The 

values are rounded. 

L 1, 2 L 1, 3 L 1, 4 L 2, 3 L 2, 4 L 3, 4 

s 1 0.58 0.67 0.58 0.58 0.42 0.58 

s 2 0.67 0.58 0.58 0.58 0.58 0.42 

s 3 0.58 0.58 0.67 0.42 0.58 0.58 

s 4 0.58 0.58 0.42 0.67 0.58 0.58 

Total 2.40 2.40 2.25 2.25 2.16 2.16 
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a  
xample 2. Assume that v sa = v sl , for each s ∈ S and l ∈ L . In

his case, any subset of r locations is an optimal solution to the

CRU problem, in which p sa = 

1 
r+1 and p sl = 

1 
r+1 , for each loca-

ion l in the chosen subset, obtaining an optimal objective value of
r 

r+1 

∑ 

s ∈ S d s . For the linear relaxation of (MILP MCRU ), since γsl = 1 it

as an optimal solution equal to x s = 

r 
| L | and p sl = 

1 
| L | +1 

for each s

 S and l ∈ L , obtaining an objective value of | L | 
| L | +1 

∑ 

s ∈ S d s . How-

ver, replacing 
γsl 

1+ γsl 
by 

γsl 
1+ ∑ 

h ∈ L (s,l) γsh 
in constraints (2.2) , we obtain

he constraint p sl ≤ 1 
r+1 x l , for each s ∈ S and l ∈ L . Hence, the pre-

ious solution is infeasible and now the optimal solution is x s = 

r 
| L | 

nd p sl = 

r 
(r+1)(| L | ) , for each s ∈ S and l ∈ L , obtaining an objective

alue equal to the optimal integer solution. 

. A branch-and-bound algorithm for the MCRU problem 

In this section, we introduce a branch-and-bound (B&B) algo-

ithm for the MCRU problem. We first present a greedy algorithm

or solving a relaxation of the original problem, which is later em-

edded into a B&B algorithm to compute upper bounds in each

ode of the B&B tree. 

.1. A greedy algorithm for computing upper bounds 

As in the previous formulations, our algorithm also represents a

olution by a vector x ∈ [0, 1] | L | , with the interpretation that x l = 1

f and only if a new facility is open in location l . To illustrate the

oncept behind our algorithm, we first present an example of how

t works. 

Consider an instance of the MCRU problem in which L =
 l 1 , l 2 , l 3 , l 4 } and S = { s 1 , s 2 , s 3 , s 4 } , we want to select r = 2 loca-

ions and we have unitary demands (i.e., d s = 1 for each s ∈ S ).

able 1 presents the deterministic utility v sl for each s ∈ S and l ∈
 ∪ { a }. 

We denote the subset containing the locations l i and l j by L i, j =
 l i , l j } . Given a feasible solution L i , j , the expected demand of a cus-

omer s captured by the facilities located in l i and l j is given by 

∑ 

∈ L i, j 

φ(L i, j , s, l) = 

e v sl i + e 
v sl j 

e v sl i + e 
v sl j + e v sa 

(6)

In Table 2 , we show the objective value of each feasi-

le solution according to Eq. (6) . As shown in this table,

onsidering each customer independently, the only local opti-

al solutions for customers s 1 , s 2 , s 3 and s 4 are L 1, 3 , L 1, 2 ,
 1, 4 and L 2, 3 , respectively. The primary objective of our al-

orithm is to solve a relaxed problem in which we consider

 local optimal solution for each customer and from this so-

ution derive an upper bound for the global optimal value.

n the given example, 
∑ 

l∈ L 1 , 3 φ(L 1 , 3 , s 1 , l) + 

∑ 

l∈ L 1 , 2 φ(L 1 , 2 , s 2 , l) +
 

l∈ L 1 , 4 φ(L 1 , 4 , s 3 , l)+ 

∑ 

l∈ L 2 , 3 φ(L 2 , 3 , s 4 , l) = 4 × 0 . ̄6 = 2 . ̄6 is an up-

er bound on the global optimal value, which is ≈ 2.40 (the global

ptimal solutions are L 1, 2 and L 1, 3 ). Intuitively, considering all

vailable locations (i.e., potential facilities) in decreasing order of

eterministic utility provided to a customer s , the corresponding

ocal optimal solution is obtained by selecting the first r potential

acilities. Note that locations l 1 , l 2 , l 3 and l 4 appear in a local opti-

al solution 3, 2, 2, and 1 times, respectively, which leads to the

ractional solution x = ( 3 4 , 
1 
2 , 

1 
2 , 

1 
4 ) . 

In our B&B algorithm, we first solve the relaxation of the orig-

nal problem as described above, obtaining a vector x ∈ [0, 1] | L | 

nd an upper bound on the optimal value. If x is integral, it corre-

ponds to an optimal solution for the original problem, and the up-

er bound calculated is precisely the optimal value. Otherwise, we

hoose a fractional variable x l and create a subproblem in which

he constraint x l = 0 must be satisfied and another subproblem in

hich x l = 1 must be satisfied. Thus, at any node of the B&B tree,

e have a subset L 0 ⊂ L of locations that are not allowed to be cho-

en and a subset L 1 ⊂ L of locations that must be chosen. At the

oot node of the B&B tree, we have that L 0 = L 1 = ∅ . 
Algorithm max_utility_greedy , presented below, maximizes 

he total expected utility received by each customer individually

i.e., it finds a local optimal solution for each customer). It con-

iders two subsets of locations, L 0 and L 1 , where locations in L 0 
re forbidden and locations in L 1 are enforced. Given the subsets

 0 and L 1 as parameters, the algorithm returns an upper bound ub

n the optimal value and a vector x ∈ [0, 1] | L | , possibly fractional,

epresenting all the customer’s choices. 

Clearly, the algorithm max_utility_greedy terminates in polyno-

ial running time. Moreover, Lemma 3 can be easily shown, which

mplies that the algorithm max_utility_greedy is correct. 

emma 3. Let ( ub , x ) be the solution returned by the

ax_utility_greedy algorithm, and let opt be the value of an

ptimal solution for the corresponding MCRU subproblem, in which

he locations in L 0 are forbidden and the locations in L 1 are enforced.

he following properties are satisfied: 

(a) 
∑ 

l∈ L x l = r; 

(b) x l = 0 for each l ∈ L 0 ; 

(c) x l = 1 for each l ∈ L 1 ; 

(d) ub ≥ opt ; 

(e) If x is integral, then ub = opt . 

.2. Computing lower bounds 

We first present a greedy heuristic for finding a feasible solu-

ion for the MCRU problem that leads to a lower bound on the op-

imal value. This heuristic has been studied in Benati and Hansen

2002) , proving that it provides an ρ-approximation, with ρ = 

e 
e −1 .

Given subsets L 0 ⊆ L and L 1 ⊆ L , the algorithm

reedy_heuristic , presented below, returns a feasible solution

or the corresponding instance of the MCRU problem (i.e., a subset

 ⊆ L of r locations such that L 1 ⊆ H and L 0 ∩ H = ∅ ). 
The choice of the next element to be included in H is made (in

ine 3) by selecting a location that provides the highest increase in

he objective function. 

.3. The branch-and-bound procedure 

The method that we propose here to solve the MCRU problem is

 standard B&B procedure which invokes max_utility_greedy and
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greedy_heuristic algorithms as subroutines for calculating the up-

per and lower bounds, respectively. We skip the unnecessary im-

plementation details and focus only on the main aspects of the al-

gorithm. 

At each step, we have a set of live nodes, which correspond to

the nodes that were not explored yet and are children of some ex-

plored node. Initially, the set of live nodes contains only the root

node, which has no fixed variables. The choice of the next node to

be explored is made by taking one live node with the maximum

upper bound, aiming to decrease the global upper bound as soon

as possible. After removing a node η from the set of live nodes,

two new nodes γ 0 and γ 1 are created as children of η. A variable

x ( η) l with the most fractional value is selected (ties are broken by

taking the first one in lexicographical order) and then all nodes in

the subtrees rooted in γ 0 or γ 1 will consider location l as forbid-

den or enforced, respectively. Naturally, if a node provides an inte-

ger solution or an upper bound which is not larger than the value

of a known feasible solution, we do not add his children to the set

of live nodes. The algorithm stops when either global upper and

lower bounds are equal or the given time limit is exceeded. 

Before adding a node to the set of live nodes, we could call

greedy_heuristic to find a feasible solution, with the respective

fixed variables, to attempt to increase the global lower bound. We

decided not to implement this approach, because empirical tests

revealed that this approach slows the procedure rather than speed-

ing it up. 

5. Computational experiments 

We now present computational results for instances obtained

from two different datasets, namely the UflLib repository and the

randomly generated instances introduced by Haase and Müller

(2014) , and also for a relatively large size instance (82341 cus-

tomers and 59 available locations) that comes from a real appli-

cation in location of park-and-ride facilities in New York City. The

methods considered here for comparison are the concave program-

ing approach introduced by Benati and Hansen (2002) , the MILP

formulation introduced by Haase (2009) (using the different coef-

ficients, proposed in this work, for inequalities (2.2) ) and the B&B

algorithm introduced in Section 4 . 

We divide the presentation of the results into three parts. We

first compare the presented relaxations, aiming to establish which

one provides the best dual bound among them. We then compare

the presented exact methods, aiming to establish which one is the

most efficient in practice in terms of running time, regardless of

the quality of the dual bounds. In these first two parts, we use the

two datasets mentioned above. Finally, we apply the exact methods

to solve the real problem instance which comes from an applica-

tion in park-and-ride facility location in New York City. 

Before presenting the results, we first describe some imple-

mentation details, as well as the machine configurations and the

datasets. 

5.1. Implementation details and machine configurations 

We have implemented the MILP formulation introduced by

Haase (2009) , which is the most efficient MILP formulation for the

MCRU problem, according to the computational study in Haase and

Müller (2014) . Besides this formulation as it was introduced, we

consider here two other versions of it which differ only by the

coefficient in constraints (2.2), as explained in Section 3.3 . One

of them is due to ( Aros-Vera et al., 2013 ), while the other one

was introduced in this work and, as shown in Lemma 1 , it has

the tightest coefficient among these three formulations. We denote

the above three approaches by ( H09 ), ( AV13 ) and ( FMY15 ), respec-
ively. We solved these formulation using IBM-ILOG CPLEX 12.6 un-

er default settings. 

We have also implemented the concave programing ap-

roach introduced by Benati and Hansen (2002) , as described in

ection 3.1 . More precisely, we embedded their nonlinear model

n our B&B algorithm, replacing the calls of max_utility_greedy

y their concave relaxation. To solve this nonlinear relaxation,

e used the method-of-moving-asymptotes (MMA) algorithm

 Svanberg, 2002 ), implemented in NLopt 2.4.2 library ( Johnson,

014 ). We denote this approach by ( CP ). 

The branch-and-bound algorithm presented in Section 4 , which

alls the MAX_UTILITY_GREEDY algorithm to compute upper

ounds, was implemented in C++ programing language and com-

iled using GCC 4.4.6. We denote this approach by ( MUG ). 

The same notation is used to designate an exact method as well

s its corresponding relaxation, being clear by the context which

f them is referred to. All computations were made in machines

unning Linux 2.6.32 under x86_64 architecture, with two quad-

ore Intel Xeon E5-2650 processors and 146 Gb of RAM. 

.2. Description of the datasets 

Our first dataset was generated as in Haase and Müller (2014) .

hat is, we randomly locate | S | customers and | L | locations over a

ectangular region of 30 × 30. We set a cost c sl equal to the dis-

ance from each customer s ∈ S to each location l ∈ L . To represent

he competitors, we also randomly locate  | L |/10 � points in the re-

ion, and we set the cost c sa equal to the minimum distance be-

ween each customer s ∈ S to these points. We generated instances

ith 50, 10 0, 20 0, and 40 0 customers; and 25, 50, and 100 loca-

ions. We denote this dataset by HM14. 

We now describe the dataset which corresponds to the ORlib

nstances, taken from the UflLib repository ( Hoefer, 2003 ), for the

ncapacitated warehouse location problem. Since these instances

ere constructed for a slightly different problem, we only consid-

red the demand and the cost from each customer for each facility

 sa . To introduce competition, for each customer s , we also ran-

omly choose a subset of  | L |/10 � facilities and set c sa equal to the

inimum cost among this subset. We omitted the instances cap71,

ap72, cap73 and cap74 because they are too small and can be

olved by all algorithms in a few seconds. We denote this dataset

y ORlib. 

Finally, we describe the dataset generated from a real instance

f the MCRU problem. The instance was obtained from the NYMTC

2009) and it corresponds to an improved version of the location

f park-and-ride facilities in New York City, presented in Aros-Vera

t al. (2013) . The data include 82341 trips from 3600 origins in

ew York, New Jersey and Connecticut to 317 destinations in Man-

attan, representing the demand in the morning peak. The “facil-

ties” available are park-and-ride locations which can be selected

mong 59 candidate locations (state-owned available parking lots).

hat is, each customer (a trip from one origin to another destina-

ion) chooses between the incumbent solution (a direct auto trip)

r a given facility (an auto trip from origin to the park-and-ride,

nd a transit trip from the facility to its destination). Hence, | S| =
2341 and | L | = 59 . The generalized costs used in the logit func-

ion consist of direct auto trip costs (including travel time, tolls,

nd auto costs) from an origin to the park-and-ride location, plus

ransit costs (travel times and waiting time) from that location to

he destination. The incumbent cost only considers the direct auto

rip from the origins to the destination. We denote this dataset by

&R-NYC. 

For each instance, we have solved the problem for r =
 , 3 , . . . , 10 . The deterministic part of the utility function is given

y v sl = −θ · c sl , for each location, and by v sa = −α · θ · c sa , for the

ompetitors. Parameter θ represents the sensitivity of customers
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Fig. 1. Gaps between the linear relaxation of the MILP models and the best integer solution found on HM14 (on the left side) and ORlib (on the right side). 
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bout the perceived utility and parameter α allows us to vary the

ompetitiveness of the incumbent competitors. In each part of the

xperiments, we have considered a specific choice of parameters θ
nd α, which is described latter on. 

.3. Analysing the quality of the different relaxations 

Although we proved that the linear relaxation ( FMY15 ) dom-

nates ( H09 ), which in turn dominates ( AV13 ), as explained in

ection 3.3 , we are still interested in comparing these three re-

axations to establish how they differ from each other in practice.

or this analysis, we have considered different values for θ and

, specifically θ = 0 . 001 × (1 . 2) i , for i = 1 , 2 , . . . (up to θ = 10 ) and

= 0 . 2 × i, for i = 1 , 2 , . . . (up to α = 10 ). 

In Fig. 1 we show the results for relaxations ( FMY15 ), ( H09 )

nd ( AV13 ), while in Fig. 2 we show the results for the relaxations

 FMY15 ), ( CP ) and ( MUG ). We plot the gap between the value of

ach relaxation and the best-know feasible solution, for the differ-

nt values of θ and α (in the horizontal axis). In these figures we

resent the numerical results for only one instance (a representa-

ive) from each dataset. For the other instances in each dataset ba-

ically the same pattern with no significant variations is obtained. 

As Figs. 1 and 2 show, the quality of the relaxations strongly

epends on the dataset and the values of the parameters α and θ .

t can be seen in Fig. 1 that the relaxations ( FMY15 ) and ( H09 ) are

ery close to each other, while ( AV13 ) is significantly weaker. 

As Fig. 2 shows, for the HM14 dataset, the ( FMY15 ) relaxation

btained gaps close to zero for all values of parameters α and θ ,

hile ( CP ) and ( MUG ) relaxations obtained similar gaps in many

ases, achieving a gap of ≈ 70 percent, depending on the values

f these parameters. On the other hand, for ORlib dataset, the

 CP ) relaxation obtained gaps very close to zero for all instances,

hile the relaxations ( FMY15 ) and ( MUG ) obtained similar gaps,

chieving a gap of ≈ 20 percent, depending on the parameters θ
nd α. 

Considering the time spent by each method to solve the corre-

ponding relaxation, the ( CP ) was the slowest one, with an average

ime of 32.4 seconds per instance, while ( FMY15 ) spent 15.72 sec-

nds per instance, in average, and the time spent by ( MUG ) was

egligible (less than a second for all instances). In the first two

ases, the dispersion of the time was considerable high, with 15–

0 percent of the instances being solved in less than a second. 
The success of a B&B algorithm relies basically on finding the

est balance between the quality of the bounds and the compu-

ational effort needed to calculate them. As Figs. 1 and 2 show,

 MUG ) does not provide an upper bound sharper than the consid-

red linear and nonlinear formulations. On the other hand, the up-

er bound given by ( MUG ) can be calculated much faster than the

thers, allowing to explore more nodes of the B&B tree, which in

any cases is more effective than spending too much time com-

uting better bounds, as the next section shows. 

.4. Analysing the running time of the exact methods 

We now compare the performance of the exact methods con-

idered in this paper. For this analysis, we have considered θ ∈ {1,

, 10} and α ∈ {0.01, 0.1, 1}, representative of the different behavior

bserved in Figs. 1 and 2 . This results in a total of 972 instances

rom HM14 and 891 instances from ORlib. We have given a time

imit of one hour per instance. 

Note that all the methods considered here have in common

hat each one of them solves a relaxation embedded in a B&B al-

orithm. In the case of ( CP ) and ( MUG ), the B&B algorithm was

mplemented as explained in Section 4.3 , while in the MILP ap-

roaches (( AV13 ), ( H09 ) and ( FMY15 )) we have used CPLEX, which

rovides its own branch-and-cut implementation, as well as other

dvanced techniques (presolving, some different general purpose

utting planes generation, more sofisticated branching strategies,

tc...). None of these techniques was used in our B&B algorithm. 

In Fig. 3 , we present the performance profiles (see Dolan &

oré, 2002 ) of the different methods on HM14 and ORlib. Each

urve plots the fraction of instances solved by each method before

 given time (in horizontal axis). Further details are provided in

ables 5 and 6 . 

As Fig. 3 shows, in both graphs clearly there are two different

urve patterns, where ( MUG ) and ( CP ) follow the same pattern,

hile the MILP formulations follow another pattern. 

For the HM14 dataset, although the MILP formulations have

olved more instances than the other two methods, for almost 70

ercent of the instances ( MUG ) was the fastest method. On the

ther hand, for the ORlib dataset, the MILP formulations were the

lowest ones, being unable to solve any of the largest instances

capa, capb and capc). Comparing only the MILP formulations,

 FMY15 ) and ( H09 ) obtained similar performances for the HM14

ataset, while ( FMY15 ) could solve ≈10 percent more instances
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Fig. 2. Gaps between the relaxations (( FMY15 ), ( H09 ) and ( AV13 )) and the best integer solution found for HM14 (on the left side) and ORlib (on the right side). 

Fig. 3. Performance profile of each method for HM14 (on the top) and ORlib (on 

the bottom). 

 

 

 

 

 

 

Algorithm 1 max_utility_greedy ( S , L , L 0 , L 1 ). 

1: x ← 0 , ub ← 0 

2: for each s ∈ S do 

3: L s ← L 1 
4: while | L s | < r do 

5: h ← arg max l∈ L \ (L s ∪ L 0 ) v sl 

6: L s ← L s ∪ { h } , 
7: end while 

8: for each l ∈ L s do 

9: ub ← ub + d s 
e v sl ∑ 

h ∈ L s ∪{ a } e v sh 

10: x l ← x l + 

1 
| S| 

11: end for 

12: end for 

13: return ( ub , x ) 

Algorithm 2 greedy_heuristic ( S , L , L 0 , L 1 ). 

1: H ← L 1 
2: while | H| < r do 

3: h ← arg max 

h ∈ L \ (L 0 ∪ H) 

∑ 

s ∈ S 

∑ 

l∈ H∪{ h } 
φ(H ∪ { h } , s, l) 

4: H ← H ∪ { h } 
5: end while 

6: lb ← 

∑ 

s ∈ S 
∑ 

l∈ H φ(H, s, l) 
7: return lb 

b  

m  

H  

e  

t  

o  

(  

T  

s  

l  

n

 

m  

m  

i  

H  

O  

(  

t

than ( H09 ) for the ORlib dataset. For both datasets, ( AV13 ) was

slower than the other two MILP formulations. 

Although the curves representing ( MUG ) and ( CP ) in Fig. 3 fol-

low a similar pattern, further analysis shows that the performance

of ( CP ) strongly relies on the quality of the relaxation in the root

node of the B&B tree, while this behavior is not observed in the

( MUG ) method. This is also explained by the fact that the lower
ound found by the greedy_heuristic algorithm is optimum in al-

ost all cases and it is very close to the optimal in the other cases.

ence, the quality of the relaxation plays an important role. For

xample, for instances in HM14 with α = 0 . 1 , in which the ini-

ial gaps reach the peak (see Fig. 2 ), the ( CP ) method could solve

nly 156 of the 324 instances, while ( MUG ) solved 229 instances

 ≈46 percent more than ( CP )) among this same subset of instances.

his can be explained by the fact that, in general, the ( CP ) method

pends considerably much more time solving its corresponding re-

axation than ( MUG ), allowing it to visit only a small number of

odes of the B&B tree. 

We conclude from the presented experiments that there is no

ethod which overcomes the others in all instances and, for each

ethod considered here (apart from ( AV13 )), there is a subset of

nstances for which the respective method is the most efficient. For

M14 instances, ( MUG ) was more efficient than ( CP ), while for the

Rlib it was the opposite. Considering only the MILP formulations,

 FMY15 ) provided the tightest relaxation and was more efficient

han the others. 
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Table 3 

Results for P&R-NYC dataset, grouped by r (9 instances per row). 

Solved instances Spent time a Initial gap a percent Visited nodes a 

r ( CP ) ( MUG ) ( CP ) ( MUG ) ( CP ) ( MUG ) ( CP ) ( MUG ) 

2 6 9 3727 69 6 .55 14 .87 13 111 

3 6 9 2485 170 2 .65 9 .00 11 271 

4 5 9 2338 411 1 .79 6 .07 7 725 

5 5 9 1813 1303 1 .07 4 .15 7 2204 

6 7 9 4707 3187 0 .42 2 .82 7 6753 

7 6 9 1169 6562 0 .26 1 .94 5 13826 

8 6 9 2441 10157 0 .18 1 .49 8 32078 

9 6 6 4025 2995 0 .10 0 .38 12 6015 

10 5 6 1469 3843 0 .06 0 .28 7 7370 

a Average among solved instances. 

Table 4 

Results for P&R-NYC dataset, grouped by α and θ (9 instances per row). 

Solved instances Spent time a Initial gap a percent Visited nodes a 

α θ ( CP ) ( MUG ) ( CP ) ( MUG ) ( CP ) ( MUG ) ( CP ) ( MUG ) 

0.5 0 .5 9 9 22 3 0 .00 0 .57 1 1 

0.5 1 .0 9 9 22 2319 0 .00 8 .52 1 4701 

0.5 2 .0 9 9 44 3 0 .00 0 .01 1 1 

1.0 0 .5 9 7 6715 9149 5 .11 12 .01 20 23791 

1.0 1 .0 9 7 2523 6558 3 .32 15 .23 11 20490 

1.0 2 .0 0 7 – 8754 – 11 .12 – 21980 

2.0 0 .5 6 9 6044 1729 0 .01 0 .58 23 2996 

2.0 1 .0 1 9 23928 1485 0 .04 0 .70 13 2574 

2.0 2 .0 0 9 – 1856 – 0 .56 – 3082 

a Average among solved instances. 

Table 5 

Results for P&R-HM14 dataset, grouped by | S | and | L | (81 instances per row). 

Solved instances Spent time a Visited nodes a 

| S | | L | ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) 

50 25 81 81 81 69 81 36 .5 27 .9 28 .1 13 .8 0 .2 31 2 1 451 11070 

50 50 81 81 81 67 79 105 .8 28 .4 26 .6 211 .1 106 .3 5188 7 7 5375 4141023 

50 100 75 80 81 48 61 382 .8 138 .0 270 .3 272 .5 167 .1 12185 51 33 461 4480988 

100 25 81 81 81 67 81 45 .7 18 .4 19 .8 55 .3 1 .7 144 1 0 2573 40582 

100 50 81 81 81 58 72 198 .3 20 .9 22 .9 162 .6 207 .9 7303 4 5 1696 4778935 

100 100 73 79 81 49 58 706 .0 119 .5 162 .7 289 .1 200 .3 7655 81 70 368 2959530 

200 25 81 81 81 74 81 55 .9 14 .0 14 .3 142 .7 9 .4 336 2 2 2922 110327 

200 50 81 81 81 57 67 485 .1 42 .2 39 .6 254 .7 211 .1 5873 3 2 1316 240 0 039 

200 100 67 79 81 46 46 802 .4 227 .9 663 .2 404 .5 112 .7 4135 138 154 228 6 86 808 

400 25 81 81 81 77 81 89 .5 49 .7 34 .3 133 .0 11 .7 131 2 1 1367 49637 

400 50 76 78 81 52 62 687 .3 91 .0 284 .4 388 .3 259 .9 3065 11 11 970 1044952 

400 100 63 74 76 36 45 766 .8 237 .3 552 .2 355 .7 299 .2 456 104 114 172 758270 

Total 921 957 967 700 814 344 .1 83 .0 174 .6 203 .4 117 .9 3856 33 33 1666 1750200 

a Average among solved instances. 
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.5. Results for an application in park-and-ride facility location 

We now compare the performance of the exact methods pre-

ented on a real instance of the problem, which comes from an

pplication in park-and-ride facility location. Since utilities of each

ustomer are linearly correlated with the travel time of each trip,

or this analysis we have considered θ ∈ {0.5, 1, 2} and α ∈ {0.5,

, 2}, resulting in a total of 81 instances. We have given a time

imit of 8 hours per instance. For all instances in this dataset, all

he MILP formulations could not solve even the linear relaxation.

ence, we limit the analysis to the other two methods, namely

 MUG ) and ( CP ). 

In Table 3 the results are grouped by the value of r , while in

able 4 the results are grouped by the values of α and θ . 

As Table 3 shows, for the instances with r from 2 to 8, ( MUG )

olved all the 63 instances, while ( CP ) solved only 41 instances ( ≈
5 percent less). In all cases, the initial gap obtained by ( CP ) was

ighter than ( MUG ). On the other hand, ( MUG ) could visit much

ore nodes of the B&B tree than ( CP ) and, in most cases, it was

lso much faster than ( CP ). 
Considering the instances grouped by the values of α and θ (see

able 4 ), we observe that the choice of these parameters strongly

nfluences the results, which was predictable if we consider the

nalysis presented in Section 5.3 . For example, for α = 0 . 5 , the ( CP )

ethod solved all the instances in the root node of the B&B tree

i.e., the relaxation found an integer solution) in a few seconds,

hile for α = { 1 , 2 } and θ = 2 it could not solve (in 8 hours) the

elaxation for any of the 18 instances. This shows that the perfor-

ance of the ( CP ) method is very sensitive not only to the input

ize but also to the numbers which appear as input (the utility

unction). This discrepancy is not observed in the ( MUG ) method.

oreover, appart from 3 rows (2nd, 4th and 5th) of Table 4 , ( MUG )

as considerably faster than ( CP ) and it could solve a greater num-

er of instances as well. 

From Tables 3 and 4 , we conclude that the performance of the

 MUG ) method is more related to the value of r than to the values

f the parameters θ and α, while the ( CP ) method behaves in

he opposite way. As observed, ( CP ) was able to visit a very small

umber of B&B nodes and, as a consequence, it can solve the

roblem only in the cases in which the initial gap is very close to
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Table 6 

Results for P&R-ORlib dataset, grouped by problem name (81 instances per row). 

Solved instances Spent time a Visited nodes a 

Name ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) ( AV13 ) ( H09 ) ( FMY15 ) ( CP ) ( MUG ) 

cap101 81 79 81 81 81 365 .1 147 .6 13 .8 0 .4 0 .2 99734 26087 4111 34 9057 

cap102 80 79 81 81 81 323 .7 143 .6 14 .1 0 .9 0 .2 76577 27504 4840 170 11596 

cap103 81 81 81 81 81 255 .3 117 .0 6 .6 0 .7 0 .1 51206 18644 1387 86 7559 

cap104 81 81 81 81 81 301 .7 135 .6 8 .3 0 .1 0 .2 61925 23396 1862 7 10026 

cap131 28 60 78 81 81 660 .3 291 .5 253 .1 1 .6 7 .5 15401 16071 39303 59 296281 

cap132 29 63 79 81 81 686 .3 312 .6 213 .2 0 .5 5 .9 16610 16783 37362 15 225039 

cap133 29 61 78 81 81 705 .2 334 .6 199 .6 0 .3 14 .2 15555 17834 34694 8 543304 

cap134 28 62 79 81 81 762 .2 337 .0 218 .3 0 .9 13 .9 17608 17375 39494 36 525487 

capa 48 21 737 .5 356 .3 112 308778 

capb 49 23 665 .6 471 .4 110 393240 

capc 53 21 477 .0 296 .5 61 225427 

Total 437 566 638 798 713 413 .7 215 .5 114 .2 117 .4 39 .2 57724 20893 20112 60 213407 

a Average among solved instances. 
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zero. Instead, the ( MUG ) method calculates the dual bounds very

quickly, allowing it to solve the problem also when the initial gap

is not so tight. 

6. Concluding remarks and future work 

In this work, we have introduced a strengthened version of the

MILP formulation presented in Haase (2009) , which was the most

efficient MILP formulation for the MCRU problem, according to the

computational experiments presented by Haase and Müller (2014) .

As our computational results showed, the proposed strengthened

MILP formulation provided slightly better dual bounds and also

could solve more instances to optimality than the other MILP for-

mulations. 

We have also introduced a greedy algorithm for solving a re-

laxation of the MCRU problem, which is embedded into a branch-

and-bound (B&B) algorithm to compute dual bounds. Considering

all the exact methods discussed in this work (MILP formulations,

a concave programing approach and our B&B algorithm), we con-

cluded that there is no method which overcomes the others in all

instances and, for each method considered here, there is a subset

of instances for which the respective method is the most efficient.

The proposed B&B algorithm was the most efficient method for

solving a dataset which comes from an application in location of

park-and-ride facilities in New York City. Moreover, this algorithm

can be easily implemented and does not make use of any external

solver, while all the other methods considered here do. 

Note that the MCRU problem still has some simplifications

compared to other facility location problems. There are two natural

extensions to this family of facility location problems. One exten-

sion is to replace the cardinality constraint by a budget constraint,

assuming that an opening cost is associated to each location and

the total cost of the chosen locations cannot exceed a given budget.

For this problem, our B&B algorithm can be adapted in a natural

fashion, solving a knapsack problem to calculate the dual bounds.

We leave further details and computational experiments for this

variant of the problem for a future work. Another extension is

to consider capacity constraints, which requires that the total ex-

pected demand captured by each facility do not exceed its given

capacity. Such constraints can easily be incorporated into the MILP

models, although maybe these models would become very hard to

solve in practice. For this variant of the problem, even finding a

feasible solution seems to be NP-hard. 
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