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a b s t r a c t

In this paper we consider characterizations of the robust uncertainty sets associated with coherent and

distortion risk measures. In this context we show that if we are willing to enforce the coherent or distortion

axioms only on random variables that are affine or linear functions of the vector of random parameters, we

may consider some new variants of the uncertainty sets determined by the classical characterizations. We

also show that in the finite probability case these variants are simple transformations of the classical sets.

Finally we present results of computational experiments that suggest that the risk measures associated with

these new uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk.
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. Introduction

Coherent risk measures and their relation to robust optimiza-

ion have received significant attention in the literature (Artzner,

elbaen, Eber, & Heath, 1999; Bertsimas & Brown, 2009; Natarajan,

achamanova, & Sim, 2009; Shapiro, Dentcheva, & Ruszczyński, 2009;

en-Tal, Ghaoui, & Nemirovski, 2009; Wächter & Mazzoni, 2013). It

s known that every coherent risk measure is associated with a pre-

isely determined convex uncertainty set with properties that are

trongly tied to the axioms characterizing coherent risk measures

e.g. Bertsimas and Brown (2009); Natarajan et al. (2009)). Similar

esults have also been given for a special class of coherent risk mea-

ures known as distortion risk measures, which include the widely

sed Conditional Value-at-Risk (Bertsimas & Brown, 2009; Pichler &

hapiro, 2013; Shapiro, 2013). All these characterizations are based

n the restrictions imposed by the coherence or distortion axioms on

he actions of the coherent risk measure over all possible random vari-

bles. However, in many settings, the random variables considered are

ither an affine or linear function of a, potentially correlated, vector

f random parameters. A classical example is portfolio optimization

see for example Markowitz (1952); Konno and Yamazaki (1991);

lack and Litterman (1992); Cvitanić and Karatzas (1992); Krokhmal,

almquist, and Uryasev (2002); Zymler, Rustem, and Kuhn (2011);

im, Shanthikumar, and Vahn (2011); Kawas and Thiele (2011); Fer-

is, Baes, and Lüthi (2012); Kolm, Tütüncü, and Fabozzi (2014)) where
∗ Corresponding author. Tel.: +1 617 324 1204.
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he random return of a portfolio is usually modeled as a weighted

inear combination of the random returns of individual assets (with

eights equal to the fraction invested in a given asset) plus a possibly

ull constant representing investment in a riskless asset. In this paper

e show that imposing the coherence and distortion axioms only on

andom variables that are a linear, or affine linear function of a vector

f random variables allows the inclusion of uncertainty sets that are

eemed invalid by the classical characterizations. In particular, we

how that in the finite probability case these additional sets at least

nclude certain expansions of the classical sets. We also show that

uch expansions are in turn related to the common practice of taking

he convex combination of a risk measure with the expected value.

ore specifically, we show that risk measures associated to these ex-

ansions are affine combinations of a risk measure with the expected

alue.

Finally we present computational experiments that suggest that

he risk measures associated with these uncertainty sets can help

itigate estimation errors of the Conditional Value-at-Risk.

The rest of this paper is organized as follows. In Section 2 we give

ome notation and background on risk measures and robust optimiza-

ion. In Section 3 we show the existence of uncertainty sets that do

ot fall in the classical characterizations, but do yield distortion risk

easures on the subspace of random variables that are either affine

r linear functions of a fixed random vector. In Section 4 we show that

he risk measures associated to these uncertainty sets are affine com-

inations of a risk measure with the expected value. Then, in Section 5

e present some results of computational experiments showing that

hese uncertainty sets could be useful to mitigate estimation errors.

inally, in Section 6 we present some final remarks.
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2. Notation and background on risk measure and robust

optimization

2.1. Notation

Throughout the paper we will use bold letters to denote column

vectors, and we will use an apostrophe to denote the transposition

operation. Thus, x ∈ Rd is a column vector and x′ its transpose. We

also note e as the vector with a 1 in every component and eN := 1
N e.

For a given set S ⊆ Rn we denote by aff(S), conv(S) and conv(S) its

affine, convex and closed convex hull respectively. We also let lin(S)
be the linear space spanned by S and ri(S) the relative interior of S.

For a given convex set C we denote by ext(C) the set of its extreme

points. To denote index sets, we use [m] := {1, . . . , m}.

2.2. Coherent risk measures

Let (�,F , P) be a probability space and L1(�,F , P) be the set of

integrable random variables that are an outcome of the uncertain

parameter in �. We use a tilde to identify random variables as in

g̃ ∈ L1(�,F , P).

Definition 2.1. A function ρ : L1(�,F , P) → R is a coherent risk mea-

sure if it satisfies the following properties.

(C1) Convexity: ρ(tg̃1 + (1 − t)g̃2) ≤ tρ(g̃1)+ (1 − t)ρ(g̃2) for all

g̃1, g̃2 ∈ L1(�,F , P) and t ∈ [0, 1].

(C2) Positive homogeneity: ρ(tg̃) = tρ(g̃) for all g̃ ∈ L1(�,F , P) and

t > 0.

(C3) Translation equivariance: ρ(t + g̃) = t + ρ(g̃) for all g̃ ∈
L1(�,F , P) and t ∈ R.

(C4) Monotonicity: ρ(g̃1) ≤ ρ(g̃2)for all g̃1, g̃2 ∈ L1(�,F , P)such that

g̃1 ≤ g̃2 a.s.

The following theorem gives another characterization of coherent

risk measures (Shapiro et al., 2009, Theorem 6.4).

Theorem 2.2. Let

� :=
{

f ∈ L∞(�,F, P) :

∫
�

f (ω)dP(ω) = 1

}
and (1a)

�+ :=
{

f ∈ L∞(�,F, P) :

∫
�

f (ω)dP(ω) = 1, f (ω) ≥ 0 a.s.

}
. (1b)

Then a function ρ : L1(�,F , P) → R satisfies (C1)–(C3) if and only if

there exists J ⊆ � such that

ρ( g̃) = sup
f∈J

∫
�

g̃(ω)f (ω)dP(ω). (2)

The function additionally satisfies (C4) if and only if J ⊆ �+. Finally, if

ρ satisfies (C1)–(C3), then it is additionally continuous. In that case, we

have that J is convex and weakly* compact.

A relation between risk measures and robust uncertainty sets

emerges when we focus on random variables that are affine or lin-

ear functions of a fixed d-dimensional random vector ũ ∈ Ld
1(�,F , P)

(i.e. ũi ∈ L1(�,F , P) for each i ∈ [d]). For instance ũ could be the ran-

dom returns on d assets and we may be interested in analyzing ran-

dom portfolio returns of the form g̃x(̃u(ω)) :=∑d
i=1 xiũi(ω) where

x ∈ Rd indicates the fractions invested in each asset (i.e. x ∈ [0, 1]d

and
∑d

i=1 xi = 1). In general, this corresponds to restricting attention

to the subspaces of L1(�,F , P) given by

V
(
ũ
)

:= {g̃ ∈ L1(�,F, P) : ∃(x, x0) ∈ Rd × R such that g̃(ω)

= g̃x,x0
(ω) := x′ũ(ω)+ x0} and

V0

(
ũ
)

:= {g̃ ∈ L1(�,F, P) : ∃x ∈ Rd such that g̃(ω) = g̃x(ω)

:= x′ũ(ω)}.
rom now on we assume that the random vector ũ ∈ Ld
1(�,F , P) is

xed and we simplify the notation to V and V0, to which we colloqui-

lly refer to as the spaces of affine and linear random variables.

An advantage of restricting our attention to V or to Vo is that the

ffect of a coherent risk measure on such random variables can be

nterpreted using the language of robust optimization as follows. Let

be a risk measure satisfying (C1)–(C3) and let J ⊆ � be a convex

nd weakly* compact set satisfying (2). Then, for any g̃x,x0
∈ V we

ave

(̃gx,x0
) = sup

f∈J

∫
�

(
x′ũ(ω)+ x0

)
f (ω)dP(ω) = x0 + sup

u∈U(ρ)
x′u, (3)

here

(ρ) :=
{∫

�
ũ(ω)f (ω)dP(ω) : f ∈ J

}
⊆ Rd.

e have that U(ρ) is the image of convex and weakly* compact set

under M : L∞(�,F , P) → Rd given by Mi(f ) := ∫� ũi(ω)f (ω)dP(ω).
ecause ũi ∈ L1(�,F , P)we have that M is linear and weakly* contin-

ous and hence U(ρ) is a compact and convex set satisfying U(ρ) ⊆
ff(supp(̃u)), where supp(̃u) is the support of ũ. If ρ additionally sat-

sfies (C4) then J ⊆ �+, and we have that U(ρ) ⊆ conv(supp(̃u)). In

he robust optimization literature this set U(ρ) is usually denoted

he robust uncertainty set and the following well known theorem

e.g. Theorem 4 of Natarajan et al. (2009)) states that its existence

ssentially characterizes coherent risk measures over V .

heorem 2.3. ρ : V → R satisfies properties (C1)–(C3) of Definition 2.1

ver V if and only if there exists a closed convex set U ⊆ aff(supp(̃u))
uch that

(̃gx,x0
) = x0 + sup

u∈U
x′u (4)

or every g̃x,x0
∈ V . In such case we have that the set U satisfying (4) is

nique and equal to

(ρ) :=
{

u ∈ Rd : x′u ≤ ρ(̃gx) ∀x ∈ Rn
}

. (5)

urthermore, ρ additionally satisfies property (C4) if and only if U(ρ) ⊆
onv(supp(̃u)).

roof. For the forward implication of the first equivalence note that

ecause ρ is a real valued function that is convex and positive ho-

ogeneous over V0 ⊆ V , we have that ρ(x′ũ) is a continuous sub-

inear function of x. Then ρ(x′ũ) = supu∈U(ρ) x′u for the closed con-

ex set U(ρ) defined in (5) (Theorem C-3.1.1 of Hiriart-Urruty and

emaréchal (2001)). Now, let u0 ∈ Rd and L ⊆ Rd be a linear sub-

pace such that aff(supp(̃u)) = L + u0. If x ∈ L⊥ then x′ũ = x′u0 a.s.

nd hence ρ(x′ũ) = x′u0. Then, by (5) we have that

(ρ) ⊆
{

u ∈ Rd : x′u ≤ x′u0 ∀x ∈ L⊥
}

=
{

u ∈ Rd : x′u = x′u0 ∀x ∈ L⊥
}

= L + u0 = aff(supp(̃u)).

he implication then follows from the translation equivariance prop-

rty. The reverse implication is straightforward.

For the forward implication of the second equivalence

ote that U(ρ) ⊆ conv(supp(̃u)) is equivalent to supu∈U(ρ) x′u ≤
upu∈supp(P) x′u for all x. If supu∈supp(̃u) x′u = ∞ this last inequality

olds automatically. If not, by translation equivariance and posi-

ive homogeneity of ρ we have ρ(supu∈supp(̃u) x′u) = supu∈supp(̃u) x′u.

hen, because of x′ũ ≤ supu∈supp(̃u) x′u and monotonicity of ρ we have

sup
∈U(ρ)

x′u = ρ(x′ũ) ≤ ρ

(
sup

u∈supp(̃u)
x′u
)

= sup
u∈supp(̃u)

x′u.

or the reverse implication note that if U(ρ) ⊆ conv(supp(̃u))
nd x′ũ(ω)+ x0 ≤ 0 a.s. then ρ(x′ũ + x0) = x0 + supu∈U(ρ) x′u ≤ x0 +
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upu∈supp(̃u) x′u ≤ 0. Together with sub-additivity of ρ this im-

lies that if g̃x,x0
≤ g̃y,y0

then ρ(̃gx,x0
) ≤ ρ(̃gx−y,x0−y0

)+ ρ(̃gy,y0
) ≤

(̃gy,y0
).

Note that in the proof of Theorem 2.3 necessity of U(ρ) ⊆
onv(supp(̃u)) was because of dominance between a constant

supu∈supp(̃u) x′u) and a linear (x′ũ) random variable. In Section 4 we

ill see that this condition can sometimes be eliminated when we

nly consider linear random variables (i.e. if we restrict ourselves to

0).

emark 2.1. It is also interesting to note the difference between

he characterization of coherent risk measures over L1(�,F , P)given

y Theorem 2.2 and the characterization of coherent risk mea-

ures over subspace V of L1(�,F , P) given by Theorem 2.3. While

ny closed convex set J ⊆ �+ induces a convex uncertainty set

(J ) := {∫� ũ(ω)f (ω)dP(ω) : f ∈ J
} ⊆ conv(supp(̃u)), the converse

oes not always hold. For instance, if we let ũ be uniformly dis-

ributed on a compact convex set C and u0 be an extreme point of

, we have that U = {u0} is a convex uncertainty set that will induce

coherent risk measure over V through (4). However, there is no

∈ �+ such that
∫
� ũ(ω)f (ω)dP(ω) = ω0 and hence by Theorem 2.2

nd (3) there cannot be a coherent risk measure over L1(�,F , P) that

oincides with this measure in V . Therefore the set of coherent risk

easures over V is larger than those over L1(�,F , P). Note that, if we

estrict ourselves to finite probability distributions, it is not too hard

o prove that this difference vanishes. However, in Section 3, we show

hat this difference no longer vanishes for the so-called distortion risk

easures.

.3. Distortion risk measures

efinition 2.4. A coherent risk measure ρ : L1(�,F , P) → R is a dis-

ortion or spectral risk measure if it satisfies the following additional

roperties.

D1) Comonotonicity: ρ(̃g1 + g̃2) = ρ(̃g1)+ ρ(̃g2) for all g̃1, g̃2 such

that
(̃
g1(ω1)− g̃1(ω2)

) (̃
g2(ω1)− g̃2(ω2)

) ≥ 0, ∀ω1,ω2 ∈ �.

D2) Law invariance: ρ(̃g1) = ρ(̃g2) for all g̃1, g̃2 that have the same

distribution.

xample 2.1. One of the most well known distortion risk mea-

ures is the Conditional Value-at-Risk which is given by CVaRδ (̃g) :=
nft∈R

{
t + 1

δ
E[(̃g − t)+]

}
.

While some characterizations of distortion risk measures are given

or more general probability distributions (e.g. see Shapiro 2013 and

ichler & Shapiro, 2013), we now concentrate on the uniform prob-

bility distribution with finite support. Results in this section can be

ound in, or are direct corollaries of results in Bertsimas and Brown

2009).

For uniform discrete distributions we let supp(P) = {ωi : i ∈
N]} ⊆ � for which P({ωi}) = 1

N for all i ∈ [N]. In this setting we as-

ume � = {ωi : i ∈ [N]} and that F is the σ -algebra of all subsets of

. Furthermore, under these assumptions sets � and �+ defined in

1) become

�N :=
{

q ∈ RN :

N∑
i=1

qi = 1

}
and

N
+ :=

{
q ∈ RN :

N∑
i=1

qi = 1, qi ≥ 0 ∀i ∈ [N]

}
.

ith this notation, every random variable g̃ ∈ L1(�,F , P) is repre-

entable by means of a vector g ∈ RN where gi := g̃(ωi) for all i ∈ [N].

ndeed, for finite probability spaces it is somewhat meaningless to

onsider L1(�,F , P) as all Lp(�,F , P) are trivially equal to space of

unctions from � to R. However, we continue using this notation to
ave a consistent way of distinguishing risk measures that are defined

ver arbitrary functions of � from those that are only defined over V
r Vo.

heorem 2.5. If P is a finite uniform distribution over� = {ωi : i ∈ [N]},

satisfies (C1)–(C3), (D1)–(D2) over L1(�,F , P)if and only if there exists

∈ �N such that

(̃g) = max
σ∈SN

N∑
i=1

qσ(i)gi, (6)

here SN is the group of permutations of N elements. Furthermore, in this

epresentation we can additionally choose q ∈ �̂N := {q ∈ �N : q1 ≥
. . ≥ qN}. Finally, ρ further satisfies (C4) over L1(�,F , P) if and only

f q additionally belongs to �N+ or �̂N+ := {q ∈ �̂N : qN ≥ 0}. In both

ases we have that

(ρ) = �q

(
ũ
)

:= conv

({
N∑

i=1

qσ(i)u
i : σ ∈ SN

})
(7)

here ui = ũ(ωi) for each i ∈ [N].

For notational convenience we again drop the dependence of �q

n ũ.

xample 2.2. Let δ ∈ [0, 1] be such that δN ∈ Z+. Then U(CVaRδ) =
hδ (�) where

δ
j :=

{
1
δN

j ≤ δN

0 otherwise
. (8)

. Distortion risk measures for uniform, discrete random

ariables in V and Vo

In this section we will prove that, even in the case of P being a finite

niform distribution, there exists distortion risk measures ρ : V → R
hat are not induced by any distortion risk measure ρ ′ : L1(�,F , P) →
. For this, we will need some previous technical lemmas.

emma 3.1. If 0 ∈ ri
(
conv

(
supp

(
ũ
)))

then for any ṽ ∈ Vo, ṽ ≥ 0 a.s.

mplies ṽ = 0 a.s.

roof. Since ṽ ∈ Vo, then ∃x ∈ Rd such that ṽ(ω) = x′ũ(ω), ∀ω ∈ �.

rom this, ṽ ≥ 0 a.s. implies that x′ũ(ω) ≥ 0, ∀ω ∈ supp
(̃
u
)
. If x = 0

he result is direct. By contradiction, assume that there exists uo ∈
upp

(
ũ
)

such that x′uo > 0. Now, since 0 ∈ ri
(
conv

(
supp

(
ũ
)))

, there

xists U a relatively open neighborhood of 0 within conv
(
supp

(
ũ
))

.

owever, because uo ∈ aff
(
conv

(
supp

(
ũ
)))

, there exists ε > 0 such

hat εuo,−εuo ∈ U ⊆ conv
(
supp

(
ũ
))

. Then, there must exists u1 ∈
upp

(
ũ
)

such that x′u1 has the same sign as x′(−εuo) < 0 which con-

radicts ṽ ≥ 0 a.s..

Lemma 3.1 implies that if 0 ∈ ri
(
conv

(
supp

(
ũ
)))

, then, condition

C4) is moot for Vo.

We then get the following refinement of Theorems 2.3 and 2.5 for

inear random variables.

orollary 3.2. If 0 ∈ ri
(
conv

(
supp

(̃
u
)))

, then

. ρ : V0 → R satisfies (C1)–(C4) over V0 if and only if U(ρ) ⊆
aff(supp(̃u)) and ρ(̃gx) = supu∈U(ρ) x′u.

. If U(ρ) = �q for q ∈ �̂N and ρ(̃gx) = supu∈U(ρ) x′u, then ρ satisfies

(C1)–(C4), (D1)–(D2) over Vo.

roof. For 1 note that the first part of the proof of Theorem 2.3 shows

hat ρ : V → R satisfies properties (C1)–(C3) over V0 if and only

f U(ρ) ⊆ aff(supp(̃u)) and ρ(̃gx) = supu∈U(ρ) x′u. To obtain the first

quivalence it only remains to show that if U(ρ) ⊆ aff(supp(̃u)), then

satisfies property (C4) over V0. For this let g̃i := xi ′ũ(ω) for i ∈ {1, 2}
e such that g̃1(ω) ≤ g̃2(ω)a.s. Then (x2 − x1)′ũ(ω) ≥ 0 a.s. and hence
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by Lemma 3.1 we have (x2 − x1)′ũ(ω) = 0 a.s. Hence g̃1(ω) = g̃2(ω)a.s

which implies ρ(g̃1) = ρ(g̃2) and condition (C4) holds.

Statement 2 follows similarly from Theorem 2.5 and

Lemma 3.1.

Using this corollary we can characterize inclusion relations be-

tween family of sets inducing coherent, or distortion risk measures

for the case 0 ∈ ri
(
conv

(
supp

(
ũ
)))

. For this, we introduce the follow-

ing definitions:

Definition 3.3. Let W, V, Vo the set of coherent risk measures defined

over L1(�,F , P),V,Vo respectively; and let W∗, V∗, V∗
o the set of dis-

tortion risk measures defined over L1(�,F , P),V,Vo respectively. We

will denote U(·) as the family of sets that induce all risk measures in

a given set.

Note that, form the definitions above, we always have thatU(H∗) ⊆
U(H) for any H ∈ {W, V, Vo}. With these definitions, we can write the

following result:

Corollary 3.4. If 0 ∈ ri
(
conv

(
supp

(
ũ
)))

, then

. U (Vo) = {U ⊆ aff(supp(̃u)) : U is closed and convex} and

U (W) ⊆ U (V) = {U ∈ U (Vo) : U ⊆ conv
(
supp

(
ũ
))}

.

Hence, U (V) and U (W) can be strictly contained in U (Vo).
. If P is a finite uniform distribution then {�q : q ∈ �̂N} ⊆ U

(
V∗

o

)
and

U
(
W∗) =

{
�q : q ∈ �̂N

+
}

⊆ U
(
V∗) ⊆ U (V).

Hence, U(V∗) and U(W∗) can be strictly contained in U(V∗
o).

Proof. The characterizations are direct from Corollary 3.2 and

Theorems 2.2, 2.3 and 2.5. In particular, the potential lack of equal-

ity between U(W) and U(V) comes from Remark 2.1. For the first

potential strict containment it suffices to find a closed convex set

U ⊆ aff(supp(̃u)) such that U � conv
(
supp

(
ũ
))

. For the second it suf-

fices to find q ∈ �̂N such that �q � conv
(
supp

(
ũ
))

.

Corollary 3.4 shows that, when 0 ∈ ri
(
conv

(
supp

(
ũ
)))

, there are

somewhat reasonable uncertainty sets for random variables in Vo

that are not induced by coherent and distortion risk measures

over L1(�,F , P) or V . However, those sets include points outside

conv
(
supp

(
ũ
))

. Remembering that the risk measure with U(ρ) =
conv

(
supp

(
ũ
))

corresponds to the worst case over all possible real-

izations of the random variable, we conclude that a risk measure with

ρ ′ with conv
(
supp

(
ũ
))

� U(ρ) would be clearly over-conservative.

Considering an uncertainty set that neither contains nor is con-

tained in conv
(
supp

(̃
u
))

is a bit more reasonable, but it still some-

what strange to include points outside conv
(
supp

(
ũ
))

in the risk

evaluation. To avoid this philosophical issue we now concentrate

on the following result, which holds irrespective of the assumption

0 ∈ ri
(
conv

(
supp

(
ũ
)))

.

Corollary 3.5. Let P be a finite uniform distribution for which 0 is not

necessarily contained in

ri
(
conv

(
supp

(
ũ
)))

. Then

U
(
W∗) =

{
�q : q ∈ �̂N

+
}

⊆ {�q : q ∈ �̂N, �q ⊆ conv
(
supp

(
ũ
))

⊆ U
(
V∗

o

)
, U
(
V∗) (9

Proof. Direct from Theorems 2.3 and 2.5.

From this corollary, the existence of an actually reasonable uncer-

tainty set for random variables in Vo and V (i.e. one that is contained

in conv
(
supp

(̃
u
))

and induces measures that satisfy (C1)–(C4), (D1)–

(D2)) that is not induced by coherent and distortion risk measures

over L1(�,F , P), reduces to the possibility of a strict containment in

(9). We now show that the first containment can indeed be strict.
To show this strict containment we need to find q ∈ �̂N such that

q ⊆ conv
(
supp

(
ũ
))

and for which there is no r ∈ �̂N+ such that �q =
r . For this, note that, for any r, by definition, we have that �r =

onv({∑N
i=1 rσ(i)u

i : σ ∈ SN}); but each term
∑N

i=1 rσ(i)u
i can be re-

ritten as M · Pσ · r; where M = (u1| . . . |uN) and Pσ is a permutation

atrix (i.e. e′Pσ = e′ and Pσ e = e) that depends on σ . Also, note that

f we know all vertices {vk}k∈[m] of �q, then, for �q to be equal to

r for some r, we need at least that each vk is the image of some

ermutation matrix Pσ , i.e. ∃Pk permutation matrix such that vk = M ·
k · r. Proposition 3.6 expresses this idea as an optimization problem.

roposition 3.6. For a given q, let {vk}k∈[m] be the set of extreme points

f �q. If there exists r ∈ �̂N+ such that �q = �r , then, the following

ptimization problem has optimal value zero.

in
∑

k∈[m]

||sk||1 (10a)

.t. vk = M · Pk · r + sk ∀k ∈ [m] (10b)
′Pk = e′ ∀k ∈ [m] (10c)
ke = e ∀k ∈ [m] (10d)

i ≥ ri+1 ∀i ∈ [N] (10e)
′r = 1 (10f)
k ∈ {0, 1}N×N ∀k ∈ [m] (10g)
k ∈ Rd ∀k ∈ [m] (10h)

∈ RN
+ (10i)

roof. Problem (10) has as variables the vectors sk, r and binary ma-

rices Pk for k ∈ [m]. Conditions (10c), (10d) and (10g), ensure that Pk

s a permutation matrix; conditions (10e), (10f) and (10i) ensure that

∈ �̂N+, while condition (10b) just says that each vk = M · Pk · r + sk.

o finish, just note that the objective function (10a) can only be zero

hen all sk are zero, and thus ensuring that each vk corresponds to

ne of the points generating the set �r .

Note that in the previous result, (10) having optimal value 0 is not

sufficient condition for �q = �r , since it only ensures that �q ⊆ �r .

owever, we show that for a particular q, problem (10) has non-zero

ptimal value.

emma 3.7. There exist q ∈ �̂N such that �q ⊆ conv(�)and �q = �q′
or all q ∈ �̂N+.

roof. Let d = 2, N = 5, supp
(
ũ
) = {(8600, 5000), (5700, 8100),

1300, 9900), (−9600, 3000), (8500,−5200)} and q = (27/100, 27/

00, 27/100, 27/100, −2/25) ∈ �̂N . Using a symbolic computation

oftware it is checked that ext(�q) = {(905, 3866), (1920, 2781),
3460, 2151), (7275, 4566), (940, 7436)} and �q ⊆ conv(�). Further-

ore, using the exact MIP solvers developed in Espinoza (2006); Cook,

och, Steffy, and Wolter (2011), we were able to computationally

rove that the optimal objective value of (10), for this data, is greater

han or equal to 1000.

Note that the exact MIP solvers from Espinoza (2006); Cook et al.

2011) can only solve linear MIP problems and problem (10) is a

onlinear MIP problem. However, (10) can easily be transformed into

linear MIP as follows. The first step is to linearize the products

etween Pk and r in (10b) using a standard technique (e.g. Adams and

herali (1986)). For this we introduce matrix variables Gk ∈ [0, 1]N×N

or all k ∈ [m]. This matrix will be such that Gk
i,j = Pk

i,j
· rj for all i, j and

, rj ∈ [0, 1] and Pk
i,j

∈ {0, 1}. To achieve this we add the set of linear

nequalities given by

k ≤ Pk ∀k ∈ [m]
k
i,j ≤ rj ∀i, j ∈ [N], k ∈ [m]

k
i,j + rj ≤ Gk

i,j + 1 ∀i, j ∈ [N], k ∈ [m].



G. Lagos et al. / European Journal of Operational Research 241 (2015) 771–782 775

Fig. 1. Uncertainty sets from Lemma 3.7.
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We then simply replace Pk · r in (10b) with Gke. Finally, to linearize

he objective function we introduce variables spk, smk ∈ Rd+ for all

∈ [m], replace sk in (10b) with spk − smk and replace the objective

unction with
∑

k∈[m] spk + smk.

Corollary 3.5 and Lemma 3.7 show that there are indeed reason-

ble uncertainty sets (distortion risk measures) for random variables

n V and Vo that are not induced by coherent and distortion risk

easures over L1(�,F , P). However, while theoretically interesting,

he conditions for constructing or detecting these sets can be highly

ntractable. For this reason, in the next section we present a more

ractical representation of the uncertainty sets �q for q ∈ �̂N .

. Epsilon scaling of a risk measure

From Lemma 3.7 we know that there exists risk measures repre-

ented by q ∈ �̂N whose uncertainty sets do not coincide with any

isk measure in �̂N+. However, it is possible to give a different charac-

erization of these uncertainty sets, providing a natural geometrical

nterpretation of these measures.

Consider for example the finite uniform probability over the

= 5 points in supp
(
ũ
) = {ui}n

i=1
= {(8600, 5000), (5700, 8100),

1300, 9900), (−9600, 3000), (8500,−5200)} and

= (27/100, 27/100, 27/100, 27/100, −2/25) ∈ �̂N

sed in Lemma 3.7. We can check that q = εq′ + (1 − ε)eN for q′ =
1/4, 1/4, 1/4, 1/4, 0) ∈ �̂N+ and ε = 7/5. Note that it is not a convex

ombination but an affine combination, because ε > 1. Fig. 1 shows

q in solid blue, �q′ in dashed red and conv(supp
(̃
u
)
) in dotted

reen. The figure also shows supp
(̃
u
)

as asterisks and u := 1
N

∑n
i=1 ui

s a plus sign. We can see from the figure that �q is an expansion of

q′ around the mean u that is still contained in conv(supp
(
ũ
)
). In this

ection we show that this figure is representative of all q ∈ �̂N in that

or such vectors �q is always an expansion of �q′ for some q′ ∈ �̂N+.

his implies that the risk measures associated with elements in �̂N

re always an affine combination of a distortion risk measure over

1(�,F , P)and the expected value. When ε ∈ [0, 1], this convex com-

ination is a well known modification of a risk measure (e.g. see Lagos,

spinoza, Moreno, and Amaya (2011) and Eq. (6.68) in Shapiro et al.

2009)), note however that in this case, ε is not restricted to be within

0, 1], as it can take values above 1. Hence the associated measure is
n affine combination of a distortion risk measure over L1(�,F , P)
nd the expected value. Because the uncertainty sets associated to

hese measures are scalings of the traditional sets, we denote these

ew measures as epsilon scalings.

efinition 4.1. For a given risk measure ρ : L1(�,F , P) → R and ε ≥
let the epsilon scaling of the measure be ρ̂ε

(̃
v
)

:= ε ρ
(̃
v
) + (1 −

) E[̃v].

It is straightforward to show that if ρ is a distortion risk measure

ver S ⊆ L1(�,F , P) then, for any ε ∈ [0, 1], ρ̂ε is also a distortion risk

easure over S . It is also easy to see that for ε ≥ 0 the only property

hat ρ̂ε may fail to inherit is monotonicity. Fortunately, for S = V
r S = Vo we can give simple conditions for ρ̂ε to be a distortion

isk measure. To give these conditions note that the uncertainty set

ssociated with ρ̂ε is U(ρ̂ε) = u + ε(U(ρ)− u) where u := E[̃u].

roposition 4.2. Let ε ≥ 0, ρ be a distortion risk measure over V and

be an arbitrary distribution.

. If u + ε(U(ρ)− u) ⊆ conv
(
supp

(
ũ
))

, then ρ̂ε is a distortion risk mea-

sure over V and Vo.

. If 0 ∈ ri
(
conv

(
supp

(
ũ
)))

, then ρ̂ε is a distortion risk measure over

Vo even if u + ε(U(ρ)− u) � conv
(
supp

(
ũ
))

.

roof. Direct from Lemma 3.1, Theorem 2.3 and the preservation of

D1) and (D2) under linear combinations.

If we restrict to finite uniform distributions we can show that ep-

ilon scalings precisely correspond to the uncertainty sets associated

ith elements in �̂N .

roposition 4.3. If P is a finite uniform distributions, then {�q : q ∈̂N} = {U(ρ̂ε) : ε ≥ 0 and ρ ∈ W∗}.

roof. For q ∈ �̂N \ �̂N+ let ε := 1 − NqN > 0 and q′ :=
1
ε

(
q + (ε − 1) eN

)
. Then q = εq′ + (1 − ε)eN , ε ≥ 0 and q′ ∈ �̂N+.

he result then follows from Corollary 3.4.

. Computational stability of epsilon scalings

In this section we present a computational example that shows

hat epsilon scalings seem to be less susceptible to estimation errors

hen approximated using samples. The need for such estimations is
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common in applications (e.g. Lagos et al. (2011); Vielma, Espinoza, and

Moreno (2009)) and, unfortunately, risk measures such as the Con-

ditional Value-at-Risk (CVaR) measure have been shown to be highly

susceptible to estimation errors in this setting (Lim et al., 2011). For

this reason we study how using the epsilon scaling of CVaR could

help alleviate these estimation errors. Following an approach similar

to that in Lim et al. (2011) we consider a simple portfolio optimiza-

tion problem, in which we have d possible assets we want to invest

over a single time period, and we have to decide what proportion

of our capital we will invest in each of the assets. Every asset i has

a return ri ∈ [−1,∞), such that if we initially invested Ci on i then

at the end of the period we will have Ci(1 + ri). When the vector

r := (r1, . . . , rd)
′ of returns is known this problem is formulated as

max{x′r : x′e = 1, x ≥ 0}. Naturally the vector of returns r is subject

to uncertainty, hence it is necessary to adopt some decision scheme

that considers the risk inherent to the problem. Let (�,F , P) be a

probability space and let r̃ ∈ Ld
1(�,F , P) be the random vector of re-

turns. Interpreting −x′̃r as the random losses of the portfolio, a classic

and well studied approach to this problem is to minimize the Condi-

tional Value-at-Risk of the losses:

z∗
δ := min

x
{CVaRδ(−x′̃r) : x′e = 1, x ≥ 0} , (11)

where CVaRδ (̃v) := mint

{
t + 1

δ
E[(̃v − t)+]

}
. If the distribution of r̃ is

known, then (11) is a well defined convex optimization problem

which can be solved in theory. However, evaluating CVaR requires

multidimensional integration and hence solving (11) is, in general,

intractable. Furthermore, more often than not, the distribution of r̃

can only be accessed through a finite number of samples. A common

data-driven approach for this issue is to use this finite number of

samples to approximate the integrals in the definition of CVaR with

the sample mean. This approximation technique is known as Sample

Average Approximation (SAA) for stochastic programming and its con-

vergence is assured under very broad settings, see e.g. Shapiro et al.

(2009, Section 5.1.1). Assume then that we have a finite i.i.d. sam-

ple r1, . . . , rN ∈ Rd of the vector of returns r̃ (e.g. from past observed

returns or simulations). The SAA version of (11) is given by

z∗
δ,N

({
ri
}N

i=1

)
:= min

x

{
CVaRN

δ

(
−x′̃r,

{
ri
}N

i=1

)
: x′e = 1, x ≥ 0

}
,

(12)

where CVaRN
δ (−x′̃r, {ri}N

i=1
) := mint{t + 1

δN

∑N
i=1[−x′ri − t]+} is

CVaRδ for the case in which r̃ is uniformly distributed in {ri}N
i=1

. For

notational convenience we drop the dependence of z∗
δ,N

, CVaRN
δ and

related values, on {ri}N
i=1

, while noting that any value or solution

derived from (12) is dependent on the N samples of r̃ and hence

is random unless the sample is fixed. With this in mind, it is well

known that, under mild conditions, z∗
δ,N

converges to z∗
δ

w.p. 1 as N

grows to infinity and that, under slightly stronger conditions, the

optimal set of (12) also converges w.p. 1 to the optimal set of (11)

(e.g. Shapiro et al. (2009, Section 5.1)). Furthermore, from Rockafellar

and Uryasev (2002, 2000) we have that (12) is equivalent to

min
x,t

{
t + 1

δN

N∑
i=1

[−x′ri − t]+ : t ∈ R, x′e = 1, x ≥ 0

}
. (13)

Note that this problem can be formulated as linear programming

problem, which can be easily solved. Unfortunately, as noted in Lim

et al. (2011), for moderate values of N and small values of δ, the

optimal solutions of (12)/(13) can have a significant difference be-

tween their sampled CVaRN
δ and their real CVaRδ . Furthermore, the

real CVaRδ of these solutions can be far from z∗
δ
. More specifi-

cally, if x∗
N is an optimal solution to (12)/(13) it is common to have

CVaRN
δ (x∗

N) � z∗
δ

� CVaRδ(x
∗
N). We aim to use ĈVaRγ ,ε (i.e., an ep-

silon scaling of CVaRγ with γ not necessarily equal to δ) to construct

a variant of (12)/(13) with optimal solutions that reduce both these
aps. Our motivation for this construction can be best illustrated if we

onsider elliptical distributions, which have the following convenient

haracterization of U (ρ) that we prove in Appendices A and B. The

se of this characterization will come from the equivalence between

pproximating CVaRδ with CVaRN
δ and approximating U(CVaRδ)with

(CVaRN
δ )

emma 5.1. Let μ ∈ Rd, B ∈ Rd×d be a non-singular matrix

nd let r̃ ∈ Ld
1(�,F , P) be such that ũx := x′B−1(̃r − μ) has the

ame continuous probability distribution for every x ∈ Sd−1 :=
x ∈ Rd : ‖x‖2 = 1

}
(e.g. r̃ is the uniformly distribution over the ellipsoid

r ∈ Rd :
∥∥B(r − μ)

∥∥
2

≤ 1
}

or r ∼ N (μ, BB′)). Then, for any distortion

isk measure ρ we have

(ρ) =
{

r ∈ Rd :
∥∥∥B−1(r − μ)

∥∥∥
2

≤ ρ(̃ux0
)
}

(14)

here x0 is an arbitrary element of Sd−1.

If r̃ is distributed as in Lemma 5.1 with B = I and μ = 0, then

(CVaRδ) is an Euclidean ball for any δ. In turn, the characterization

rom Example 2.2 shows that, if δN ∈ Z+, thenU
(
CVaRN

δ

)
is the convex

ull of the
( N
δN

)
points in �̂

hδ := {∑N
i=1 h

δ
σ (i)r

i : σ ∈ SN} for h
δ

defined

n (8) (�̂
hδ corresponds to all averages of δN points from {ri}N

i=1
).

ow, it is well known that to obtain a good approximations of the

uclidean ball by a set of the form conv(�̂
hδ ) we need the number of

xtreme points of this set to be quite large (see Ball (1997)). While

t is hard to predict the number of extreme points of conv(�̂
hδ ), it

s likely to be a non-decreasing function of |�̂
hδ | = ( N

δN

)
. Hence, we

ould then expect the approximation of U(CVaR0.5)by U(CVaRN
0.5) to

e much better that the approximation of U(CVaRδ) by U(CVaRN
δ ) for

mall δ. This aligns with the SAA approximation issues of CVaRδ being

orse for small δ. Unfortunately, small values of δ are precisely the

nes needed to incorporate appropriate levels of risk aversion and

t is unlikely that U(CVaRN
0.5) will provide a good approximation of

(CVaRδ) for δ � 0.5. However, by noting that both U(CVaR0.5) and

(CVaRδ) are Euclidean balls (just with different radii), we have that

(CVaRN
0.5) is indeed a good approximation of a scaling of U(CVaRδ)

or δ � 0.5. Conversely, for any δ an appropriate scaling ofU(CVaRN
0.5)

ill be a good approximation ofU(CVaRδ). More precisely, if r0.5 is the

adius ofU(CVaR0.5)and rδ is the radius ofU(CVaRδ), thenU(CVaRδ) =
rδ/r0.5)U(CVaR0.5) and hence we expect (rδ/r0.5)U(CVaRN

0.5) to be a

etter approximation of U(CVaRδ) than U(CVaRN
δ ) (at least for small

). The potential advantage of using ĈVaRγ ,ε emerges by noting that

calings of U(CVaRN
0.5) are precisely the uncertainty sets U(ĈVaR

N

0.5,ε)

f ĈVaR0.5,ε for an appropriately chosen ε. We formalize this in the

ollowing corollary that shows how to calculate the appropriate ε for

lliptical distributions and all values of δ. Note that the proposition

an be directly extended to ĈVaRγ ,ε for values of γ other than 0.5.

orollary 5.2. Let μ ∈ Rd, B ∈ Rd×d be a non-singular matrix and let

∈ Ld
1(�,F , P)be such that ũx := x′B−1(̃r − μ)has the same continuous

robability distribution for every x ∈ Sd−1 := {x ∈ Rd : ‖x‖2 = 1}. Then,

(CVaRδ) = U(ĈVaR0.5,ε) for ε = CVaRδ (̃ux0
)

CVaR0.5 (̃ux0
) , where x0 is an arbitrary

lement of Sd−1.

roof. Note that ĈVaR0.5,ε (̃ux0
) = εCVaR0.5(̃ux0

)+ (1 − ε)E(̃ux0
) =

CVaR0.5(̃ux0
) = CVaRδ (̃ux0

).

The following example provides a graphical illustration of the

dvantage of using U(ĈVaR
N

0.5,ε) over U(CVaRN
δ ) to approximate

(CVaRδ).

xample 5.1. The uncertainty set associated with CVaR1/8 for a three-

imensional standard normal distributed r̃ corresponds to a sphere

f radius 1.6468 centered at the origin. Fig. 2 shows the uncertainty
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ets associated with CVaRN
1/8 (left) and ĈVaR

N

0.5,ε (right) for a sample

f N = 8 random points (with ε selected as in Corollary 5.2). The

ncertainty set associated with CVaRN
1/8 has six vertices and eight

aces. In contrast, the uncertainty set associated with ĈVaR
N

0.5,ε has

0 vertices and 56 faces and seems to give a closer approximation of

he ball.

Corollary 5.2 shows that

∗
0.5,ε := min

{
ĈVaR0.5,ε

(−x′̃r
)

: x′e = 1, x ≥ 0
}

(15)

s equivalent to (11) if r̃ is elliptically distributed and ε is chosen as

n the corollary (in particular z∗
0.5,ε = z∗

δ
). Furthermore, Example 5.1

llustrates how the SAA version (12)/(13) of (11) is not equivalent to

he SAA version of (15) given by

∗
0.5,ε,N := min

x

{
ĈVaR

N

0.5,ε

(−x′̃r
)

: x′e = 1, x ≥ 0

}
, (16)

here ĈVaR
N

0.5,ε(−x′̃r) := ε mint{t + 1
0.5N

∑N
i=1[−x′ri − t]+} − (1 −

) 1
N

∑N
i=1 x′ri. However, Example 5.1 also suggests that (16) is

ikely to provide a better approximation of (11) than (12)/(13).

hile the equivalence between (11) and (15) no longer holds for

eneral distributions, (16) might still provide a better approximation

han (12)/(13). In particular, it is still reasonable to expect that

(ĈVaR
N

0.5,ε) has a richer structure than U(CVaRN
δ ) as the former

s constructed by taking a larger number of partial averages of

he sample points. This could have a smoothing effect similar to

he one depicted in Fig. 2, which could provide more stability for

mall sample sizes. Still, as N grows, we can only guarantee that

V̂aR
N

0.5,ε converges to ĈVaR0.5,ε , and this last risk measure may not

e equivalent to CVaRδ for any δ. However, Corollary 3.4 shows that

V̂aR0.5,ε is a valid risk measure on its own right, which validates

he use of ĈVaR
N

0.5,ε independent of its potential approximation of

VaRδ . Nonetheless, in the next two subsections we test quality of

his potential approximation on both elliptical and non-elliptical

istributions. We end this section with two observations. The first

ne concerns the calculation of the scaling factor ε for non-elliptical

istributions. While Corollary 5.2 no longer provides a precise
ormula we could still follow its general idea and choose

≈ CVaRδ(−x′̃r)− E[−x′̃r]

CVaR0.5(−x′̃r)− E[−x′̃r]
(17)

or some fixed x ∈ Sd−1. Our approach will be to select a SAA approx-

mation of this ratio.

Our final observation is that, similar to (13), (16) is also equivalent

o the convenient problem given by

min

{
ε

(
t + 1

0.5N

N∑
i=1

[−x′ri − t]+
)

− (1 − ε) x′r : t ∈ R, x′e = 1, x ≥ 0

}
(18)

here r := 1
N

∑N
i=1 ri, which can be also easily formulated as a linear

rogramming problem.

.1. Results for Gaussian distribution

We begin our experiments with a Gaussian distribution as it sat-

sfies the conditions of Corollary 5.2 and it also allows for the exact

olution of (11). To generate the data for our experiments we utilize

he same historical data for 200 stocks listed in SP-500 used in Vielma,

hmed, and Nemhauser (2008) to estimate the mean vector μ and

ovariance matrix � of these assets. We then assume that the real

istribution of the assets is Gaussian with this mean and covariance.

ence, by Lemma 5.1, we have that (11) is equivalent to the second-

rder conic problem given by

∗
δ = min

x,t

{
CVaRδ (̃ν) · t − x′r̄ : x′e = 1,

∥∥∥�1/2x
∥∥∥

2
≤ t, x, t ≥ 0

}
(19)

here ν̃ ∼ N (0, 1).
Our objective is to compare the approximation effectiveness of

VaRN
δ and ĈVaR

N

0.5,ε for this problem, with a particular emphasis on

he quality of the obtained feasible portfolios. For this we proceed as

ollows for each δ ∈ {0.01, 0.1}.

. Generate N i.i.d. samples from our real distribution N (μ,�).
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Fig. 3. Mitigating estimation errors of CVaR (Gaussian distribution).

Table 1

Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (Gaussian distribution).

Portfolio

size

δ z∗
δ

Type Best solution Average solution

N = 100 N = 500 N = 10, 000 N = 100 N = 500 N = 10, 000

20 0.01 0.3502 CVaRN
δ 0.3709 0.3610 0.3509 0.4398 0.3932 0.3535

ĈVaR
N

0.5,ε(δ) 0.3577 0.3521 0.3503 0.3846 0.3576 0.3506

20 0.1 0.2195 CVaRN
δ 0.2333 0.2206 0.2197 0.2595 0.2288 0.2200

ĈVaR
N

0.5,ε(δ) 0.2265 0.2208 0.2196 0.2461 0.2253 0.2198

200 0.01 0.2107 CVaRN
δ 0.2866 0.2412 0.2140 0.3643 0.2665 0.2171

ĈVaR
N

0.5,ε(δ) 0.2488 0.2190 0.2112 0.2829 0.2267 0.2116

200 0.1 0.1266 CVaRN
δ 0.1741 0.1375 0.1272 0.2179 0.1474 0.1277

ĈVaR
N

0.5,ε(δ) 0.1545 0.1342 0.1269 0.1916 0.1395 0.1272

n

t

b

w

e

a

f

c

b

m

s

s

s

T

o

δ
B

r

l

a

s

a

t

1 Large enough to have variety, but still significantly smaller than all feasible solu-

tions.
2. Solve the sampled CVaR problem (13) and save the optimal solution

x∗
CVaRN

δ

.

3. Compute ε(δ) = CVaRδ (̃ν)
CVaR0.5 (̃ν) for ν̃ ∼ N (0, 1).

4. Solve the sampled ĈVaR
N

0.5,ε(δ) problem (18) and save the optimal

solution x∗
ĈVaR

N

0.5,ε(δ)

.

5. Plot CVaRδ(−x′̃r)versus CVaRN
δ (−x′̃r) for x ∈

{
x∗

CVaRN
δ

, x∗
ĈVaR

N

0.5,ε(δ)

}
.

6. Repeat steps 1–5 100 times.

Fig. 3 shows the results for this experiment. Blue xs correspond to

x∗
CVaRN

δ

and green circles correspond to x∗
ĈVaR

N

0.5,ε(δ)

. The vertical ma-

genta line shows the exact z∗
δ

as computed by (19), and the diagonal

blue line corresponds to equal values for the real and sampled CVaR.

As expected (e.g. Shapiro et al. (2009, Proposition 5.6)), the sampled

CVaR consistently underestimates the real CVaR and this effect is

more significant for δ = 0.01. However, the epsilon scaling tends to

reduce this downward bias. More importantly, the epsilon scaling

reduces variability of both the sampled and real CVaR of the opti-

mal solutions and tends to provide better solutions to the original

problem.

The increased concentration along the real CVaR axis of the epsilon

scalings solutions can be particularly advantageous when consider-

ing hard-to-solve optimization problems. Estimating the real CVaR of

a particular solution can be significantly easier than approximating

the whole CVaR function. Hence, if we can generate a relatively large
umber1 of potentially good solutions, it is reasonable to estimate

he real CVaR and pick the best one. For instance, if we look at the

est among the traditional solutions (the blue x further to the left)

e can see that it is a relatively good solution. However, generating

nough solutions to guarantee we find such best solution may not

lways be computationally feasible. For example, if we consider port-

olio optimization problems with limited diversification or cardinality

onstraints problem (11) becomes a mixed integer problem that can

e very hard to solve (Vielma et al., 2008). Hence, in some cases, a

ore realistic comparison may be to simulate the effect of solving a

ingle instance of the appropriate optimization problem by randomly

electing one of the traditional solutions (blue x’s) and one of the ep-

ilon scaling solutions (green circles). We explore this evaluation in

able 1 where we also study the effect on the results of the number

f samples and the number stocks.

Table 1 shows results for portfolio sized of 20 and 200 stocks,

∈ {0.1, 0.01} and sample sizes of N = 100, 500 and 10, 000. Column

est Solution shows the smallest value of CVaRδ(−x′̃r) over the 100

epetitions for each x ∈ {x∗
CVaRN

δ

, x∗
ĈVaR

N

0.5,ε(δ)

}. This is intended to il-

ustrate the case in which the optimization problem is easy to use

nd we can generate several candidate solutions, evaluate them and

elect the best. In contrast, column Average Solution shows the aver-

ge value of CVaRδ(−x′̃r) over the 100 repetitions. This is intended

o illustrate the case in which the optimization problem is hard to
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Fig. 4. Mitigating estimation errors of CVaR (uniform distribution).
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Fig. 5. Mitigating estimation errors of CVaR (normal-inverse Gaussian distribution).
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olve and only one or very few solutions can be generated (i.e. we

xpect this average to be representative of a typical single solution).

inally, column z∗
δ

shows the exact optimal value obtained through

19). We can see that the epsilon scaling yields better solutions for

ll parameters and metrics. This advantage is particularly strong for

he metric of average solution and small number of samples and δ. In

ppendix B we show how this advantage is increased further when

e allow short-selling in the portfolio problem (i.e. when we remove

he non-negativity constraint on x variables).

.2. Results for other non-gaussian distribution

To study a case in which the conditions of Corollary 5.2 do not

old we repeat the previous experiment assuming that returns follow

uniform and a normal-inverse gaussian distribution. In the first

ase, each stock has a return ri = μi + η̃i, where η̃i are independent

andom variables uniformly distributed in [−1, 1]. Note that in this

ase U
(
CVaRδ

)
for different δs are not scalings of one another. In the

econd case, we assume that ri follows a multivariate normal-inverse

aussian distribution, which is a heavy-tailed distribution commonly

sed on finance. In this latter case, we assume that stocks have a return
= μ + √
τυ (Aas, Haff, & Dimakos, 2006) where υ ∼ N (0,�) and

follows a generalized inverse Gaussian distribution of parameters

= −0.5, χ = 1 and ψ = 1 (following the notation of Prause (1999)).

On both cases, even evaluating CVaRδ requires multidimensional

ntegration. For this reason we compute the scaling factor ε in step 3

s the sampled estimation of (17), given by

= CVaRM
δ (−x′̃r)+ 1

M

∑M
i=1 x′ri

CVaRM
0.5(−x′̃r)+ 1

M

∑M
i=1 x′ri

here x is the solution obtained in step 2, and M = 100, 000.

As explained in Shapiro et al. (2009, Section 5.6.1), it is possible

o estimate a lower bound of z∗
δ

using the law of large numbers com-

uting the average and the variance of CVaRN
δ (x∗

CVaRN
δ

) over the 100

epetitions. We use this bound in Figs. 4 and 5 to replace the exact

alue calculated with (19), which is not applicable here. We now use

vertical dashed magenta line to emphasize that it is only a lower

ound that holds with high probability and not the exact value of z∗
δ
.

imilarly, this bound in Tables 2 and 3 is labeled as z∗
δ
.

We again see that the epsilon scaling provides an advantage, par-

icularly for small number of samples and δ. Furthermore, while the
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Table 2

Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (uniform distribution).

Portfolio

size

δ z∗
δ

Type Best solution Average solution

N = 100 N = 500 N = 10, 000 N = 100 N = 500 N = 10, 000

20 0.01 0.2044 CVaRN
δ 0.2541 0.2288 0.2123 0.2987 0.2619 0.2144

ĈVaR
N

γ ,ε 0.2293 0.2173 0.2130 0.2628 0.2243 0.2139

20 0.1 0.0877 CVaRN
δ 0.1117 0.0970 0.0894 0.1427 0.1046 0.0902

ĈVaR
N

γ ,ε 0.1111 0.0931 0.0904 0.1297 0.1000 0.0909

200 0.01 0.0003 CVaRN
δ 0.1068 0.0591 0.0271 0.1326 0.0677 0.0294

ĈVaR
N

γ ,ε 0.0899 0.0425 0.0182 0.1031 0.0475 0.0191

200 0.1 −0.0410 CVaRN
δ 0.0092 −0.0183 −0.0359 0.03188 −0.0102 −0.0350

ĈVaR
N

γ ,ε 0.0058 −0.0222 −0.0363 0.0246 −0.0165 −0.0360

Table 3

Solution quality for portfolio of 20 and 200 stocks for different values of δ and N (normal-inverse Gaussian distribution).

Portfolio

size

δ z∗
δ

Type Best solution Average solution

N = 100 N = 500 N = 10, 000 N = 100 N = 500 N = 10, 000

20 0.01 0.4519 CVaRN
δ 0.4836 0.4802 0.4654 0.6074 0.5476 0.4700

ĈVaR
N

γ ,ε 0.4852 0.4620 0.4627 0.5118 0.4730 0.4637

20 0.1 0.2272 CVaRN
δ 0.2438 0.2303 0.2282 0.2832 0.2432 0.2287

ĈVaR
N

γ ,ε 0.2387 0.2306 0.2278 0.2561 0.2348 0.2282

200 0.01 0.2642 CVaRN
δ 0.4238 0.3328 0.2901 0.5388 0.3796 0.2969

ĈVaR
N

γ ,ε 0.3452 0.3004 0.2795 0.3823 0.3057 0.2833

200 0.1 0.1293 CVaRN
δ 0.1901 0.1517 0.1333 0.2472 0.1632 0.1337

ĈVaR
N

γ ,ε 0.1627 0.1417 0.1324 0.1997 0.1469 0.1326

S

w
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1

s

b

t

A

P

U

T

o

h

S

o

gap between the traditional CVaR and the epsilon scaling is virtu-

ally eliminated for very large number of samples (N = 10, 000), the

epsilon scaling still provides better solutions in both metrics. Again,

results for problems where we allow short-selling are included in

Figs. B.1–B.3 of AppendixB.

6. Conclusions

We have shown that, at least for finite uniform distributions, the

family of uncertainty sets associated with distortion risk measures

over affine or linear random variables is strictly larger that those asso-

ciated with distortion risk measures over arbitrary random variables.

In particular, we have shown that certain expansions of uncertainty

sets associated with distortion risk measures also yield distortion risk

measures over affine or linear random variables. This effectively ex-

pands the family of uncertainty sets with favorable theoretical prop-

erties. To study the potential advantage of these additional uncer-

tainty sets we have included some preliminary experiments that sug-

gest that these expansions could be useful to mitigate estimation

errors.

We finally note that the additional uncertainty sets we have con-

sidered still do not give a precise characterization of the family of

uncertainty sets associated with distortion risk measures over affine

or linear random variables. In particular, it is easy to find examples

where the law invariance property is also moot for linear random vari-

ables. For example, consider � = {−1, 0, 2} with the uniform proba-

bility. In this space a linear random variable is represented by a scalar

x and its realizations are given by {−x, 0, 2x}. It is easy to see that

the random variables associated with x and y have the same distribu-

tion only if −x = 2y and −y = 2x. The only solution to this system is

x = y = 0 and hence there are no non-trivial linear random variables

with the same distribution. More general settings might not com-

pletely eliminate the possibility of non-trivial linear random variables

with the same distribution. However, a significant limitation of such

random variables could validate the use of additional uncertainty sets.
till, it is likely that any characterization of these yet additional sets

ill be highly dependent on the specific structure of �.
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ppendix A. Proof of Lemma 5.1

roof.

(ρ) =
{

u ∈ Rd : x′u ≤ ρ(̃u′x) for all x ∈ Sn−1
}

=
{

u ∈ Rd : x′(u − μ) ≤ ρ((̃u − μ)′x) for all x ∈ Sn−1
}

=
⎧⎨⎩u ∈ Rd :

⎛⎝ (
B−1

)′
x∥∥∥(B−1

)′
x
∥∥∥

2

⎞⎠′

× (u − μ) ≤ ρ

⎛⎝(̃u − μ)′

⎛⎝ (
B−1

)′
x∥∥∥(B−1

)′
x
∥∥∥

2

⎞⎠⎞⎠ for all x ∈ Sn−1

⎫⎬⎭
= {u ∈ Rd : x′B−1(u − μ) ≤ ρ(x′B−1(̃u − μ)) for all x ∈ Sn−1}
=
{

u ∈ Rd : sup
x∈Sn−1

x′B−1(u − μ) ≤ ρ(̃ux0
)

}
=
{

u ∈ Rd :
∥∥∥B−1(u − μ)

∥∥∥
2

≤ ρ(̃ux0
)
}
.

he first equality comes from translation equivariance ofρ , the second

ne comes from non-singularity of
(

B−1
)′

, the third from positive

omogeneity of ρ and the fourth comes from ρ(̃ux) = ρ(̃ux0
)for all x ∈

n−1 becauseρ is law invariant and the assumption on the distribution

f ũx.

http://dx.doi.org/10.13039/501100002850
http://dx.doi.org/10.13039/501100002850
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ppendix B. Results for the portfolio problem allowing

hort-selling

See Figs. B.1–B.3.
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