[script] window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-1437536-2'); [/script]
Javiera Barrera, Eduardo Moreno, Gonzalo Muñoz}
Publication year: 2021

Convexification based on convex envelopes is ubiquitous in the non-linear optimization literature. Thanks to considerable efforts of the optimization community for decades, we are able to compute the convex envelopes of a considerable number of functions that appear in practice, and thus obtain tight and tractable approximations to challenging problems. We contribute to this line of work by considering a family of functions that, to the best of our knowledge, has not been considered before in the literature. We call this family ray-concave functions. We show sufficient conditions that allow us to easily compute closed-form expressions for the convex envelope of ray-concave functions over arbitrary polytopes. With these tools, we are able to provide new perspectives to previously known convex envelopes and derive a previously unknown convex envelope for a function that arises in probability contexts.