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Abstract

We consider the problem of separating maximally violated inequalities
for the precedence constrained knapsack problem. Though we consider
maximally violated constraints in general, special emphasis is placed on
induced cover inequalities and induced clique inequalities. Our contribu-
tions include a new partial characterization of maximally violated inequal-
ities, a new safe shrinking technique, and new insights on strengthening
and lifting. This work follows on the work of Boyd (1993), Park and Park
(1997), van de Leesel et al (1999) and Boland et al (2011).

1 Introduction

Given a directed graph G = (V,A), vectors a ∈ ZV+, c ∈ ZV , and b ∈ Z+, the
precedence-constrained knapsack problem (PCKP) consists in solving a problem
of the form,

max cx
s.t., x ∈ P (G, a, b)

x ∈ {0, 1}V

where
P (G, a, b) =

{
x ∈ [0, 1]V : ax ≤ b, xi ≤ xj ∀(i, j) ∈ A

}
.

Aside from being an interesting problem in itself, PCKP is an important
relaxation of many common, more complex, integer programming problems.
Important examples arise in the context of production scheduling problems,
where a number of jobs must be scheduled for processing subject to limited re-
sources, and where precedence relationships dictate that in order for some jobs
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to be processed other jobs must be processed as well. An example of such a
problem that has received much attention in recent years is the open-pit mine
production scheduling problem. In this problem, jobs represent discretized units
of rock that must be extracted, and precedence relationships establish that units
must be extracted from the surface on downwards. Integer programming for-
mulations for open pit mine production scheduling problems having PCKP as
a substructure appear as early as in the 1960s and 1970s in the works of John-
son [17], Dagdelen and Johnson [14] and others. Since then, a number of articles
have addressed PCKP specifically. These articles can broadly be subdivided in
two groups: Those articles which develop algorithms to solve PCKP as an op-
timization problem, and those articles that analyze the polyhedral structure of
P (G, a, b).

Practical open pit mining problems are very large, easily having tens or
hundreds of millions of variables. As shown by Johnson and Neimi [16], however,
PCKP is strongly NP-complete. Thus, efforts to solve this problem to provable
optimality gaps have either been based on approximation algorithms [12, 23] or
on enumerative methods such as branch-and-bound. An important component
of any branch-and-bound solver is the LP relaxation solver. Much progress has
been made in recent years solving the LP relaxations of PCKP generalizations
with customized algorithms. Important examples include the work of Boland
et al. [8], Chicoisne et al [10] and Bienstock and Zuckerberg [5]. Heuristics for
these problems that use PCKP as a subproblem, or that use the PCKP linear
programming relaxation as a subproblem, are described in Amaya et al [1], Bley
et al [6], Chicoisne et al [10] and Cullenbine et al [13].

Polyhedral analyses, on the other hand, have focused on developing useful
cutting planes. Boyd [9], Park and Park [22] and van de Leesel et al [18] describe
characterizations, separation algorithms, and strengthening techniques for an
important class of cutting planes known as induced minimal cover inequalities.
Boland et al [7] extends previous results using clique inequalities. Bley [6] tests
many of these ideas on open pit mine production scheduling problems. Despite
important work in this problem, cutting plane techniques to date are still limited
in terms of the instance sizes that can effectively be tackled computationally.
This is a problem, because if there is any hope of being able to solve large
integer programming formulations of PCKP generalizations, such as those that
appear in the context of open pit mining, cutting planes are likely to play an
important role as they have in solving other large combinatorial optimization
problems [2, 3].

In this article, given a fractional point x∗ ∈ P (G, a, b), we are interested in
efficiently finding an inequality αx ≤ β that is valid for x ∈ P (G, a, b)∩Zn and
as violated as possible by x∗. Specifically, we are interested in tackling algo-
rithmic aspects of separating maximally violated inequalities for the precedence
constrained knapsack problem, and builds on the work of Boyd [9], Park and
Park [22], van de Leesel et al [18] and Boland et al [7] so that it can be applied
on very large instances of PCKP and on generalizations of PCKP. For this we
introduce a new shrinking technique that can be used to reduce the separation
problem in any given instance of PCKP to an equivalent separation problem in
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a smaller instance. This shrinking procedure is safe, in the sense that it guar-
antees that the most violated cuts in the original problem can be mapped to
equally violated cuts in the shrunken problem, and vice-versa. Furthermore, we
introduce a new way of strengthening general valid inequalities for PCKP, and
remark how the lifting techniques of Park and Park [22], originally proposed
for minimal induced cover inequalities, can be generalized to broader classes of
inequalities.

This article is organized as follows. In Section 2 we review important results
in the literature and introduce the notation we will use throughout the paper.
In Section 3 we characterize maximally violated inequalities and introduce the
concept of break-points, which will be used throughout the paper. In Section 4
we show how to shrink the original graph in order to find maximally violated
inequalities in a smaller problem. Moreover, we show that if this shrinking
operations is obtained using break-points, then we can map maximally violated
inequalities obtained in the shrunken problem to maximally violated inequalities
of the original one. In Section 5 we show that it is possible to obtain even further
reductions. Finally, in Section 6 we show how to obtain strengthened inequalities
by using lifting procedures. Our lifting results builds on the results of Boyd [9],
Park and Park [22] and van de Leesel et al [18].

2 Definitions, assumptions, and background ma-
terial

In this section we establish the assumptions and notations that we will use
throughout the article. More importantly, we survey some important prior re-
sults concerning two classes of valid inequalities for PCKP, the minimal induced
cover inequalities and the clique inequalities. These results, all of which can be
found in previous literature, will be the starting point for our developments in
later sections.

Definition 1. Consider a directed graph G = (V,A) with no directed cycles.
We say that C ⊆ V is a closure in G if i ∈ C implies j ∈ C for all (i, j) ∈ A.
That is, if set C is closed under the precedence relationships defined by graph
G. Given any set S ⊆ V we define the smallest closure containing S in graph
G = (V,A) as follows,

cl(G,S) = {j ∈ V : there is a path in G from some i ∈ S to j }.

To simplify notation, when graph G is clear from context we will write cl(S)
instead of cl(G,S). For i ∈ V , we will write cl(i) instead of cl({i}).

Definition 2. Consider a directed graph G = (V,A) with no directed cycles.
We say that R ⊆ V is a reverse closure in G if j ∈ R implies i ∈ R for all
(i, j) ∈ A. That is, if set R is closed under the reverse of precedence relationships
defined by graph G. Given any set S ⊆ V we define the smallest reverse closure
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containing S in graph G = (V,A) as follows,

rcl(G,S) = {i ∈ V : there is a path in G from i to some j ∈ S }.

To simplify notation, when graph G is clear from context we will write rcl(S)
instead of rcl(G,S). For i ∈ V , we will write rcl(i) instead of rcl({i}).

Definition 3. We say that (G, a, b) defines an instance of PCKP if,

• G = (V,A) is a directed graph,

• a ∈ ZV represents non-negative node-weights,

• b ∈ Z is a non-negative scalar,

In order to simplify notation and proofs we will make the following working
assumptions regarding instances of PCKP. Given a set C ⊆ V and a vector
y ∈ RV we will convene that y(C) =

∑
i∈C yi.

Definition 4. We say that an instance of PCKP (G, a, b) satisfies our working
assumptions if,

• G = (V,A) has no directed cycles,

• For every i, j, k ∈ V, (i, j), (j, k) ∈ A implies (i, k) ∈ A,

• There are no arcs of the form (i, i) with i ∈ V ,

• a(cl(i)) ≤ b for all i ∈ V ,

• a(V ) > b.

Note that there is no loss of generality from our working assumptions. In
fact, if G were not acyclic, we could iteratively collapse all of the variables
associated to nodes in any directed cycle into a single variable. In this way we
would obtain an equivalent instance of PCKP. Adding (or removing) arcs to
satisfy the second and third conditions does not change the solution of PCKP,
nor does it change the set P (G, a, b). If a(cl(k)) > b for k ∈ V , then xk = 0 for
all x ∈ P (G, a, b)∩{0, 1}n. In this case variable xk may as well be eliminated. If
a(V ) ≤ b, then P (G, a, b) is fully described by inequalities xi ≤ xj for (i, j) ∈ A
and xi ≥ 0 for i ∈ V , making all valid inequalities trivial. Finally note that
under our working assumptions, sets cl(S) and rcl(S) can be defined as follows,

cl(S) = {j ∈ V : (i, j) ∈ A for some i ∈ S}.
rcl(S) = {i ∈ V : (i, j) ∈ A for some j ∈ S}.

Theorem 1 (Boyd, [9]). If (G, a, b) defines an instance of PCKP satisfying our
working assumptions, then P (G, a, b) is full dimensional.

4



Given an instance of PCKP (G, a, b) satisfying our working assumptions, we
focus on finding strong inequalities αx ≤ b that are valid for P (G, a, b)∩ZV . In
what follows, we formalize two different notions of strong valid inequalities.

Definition 5. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. Consider two inequalities αx ≤ β, and α′x ≤ β′, both valid for
P (G, a, b) ∩ ZV . We say that inequality α′x ≤ β′ is stronger than inequality
αx ≤ β if (a) for every x̂ ∈ P (G, a, b) we have α′x̂ ≤ β′ implies αx̂ ≤ β, and
(b) there exists x̂ ∈ P (G, a, b) ∩ ZV such that α′x̂ = β′ and αx̂ < β. We say
that inequality α′x ≤ β′ is stronger in a weak-sense than inequality αx ≤ β
if, instead of condition (b), we have (b’) there exists x̂ ∈ P (G, a, b) such that
(α′x̂− β′)/||(α′, b′)|| < (αx̂− β)/||(α, β)||.

From a polyhedral analysis point of view it is only natural to try and gen-
eralize known families of inequalities for the knapsack problem (KP) to PCKP.
The first to do so was Boyd [9], who extending the cover inequalities of Balas
and Jeroslow [4], and (1, k)-configurations of Padberg [20], first introduced the
notion of induced cover inequalities.

Definition 6. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. We say that C ⊆ V is an induced cover of (G, a, b) if a(cl(C)) > b.
If C is an induced cover, then valid inequality

x(C) ≤ |C| − 1, (1)

is known as the induced cover inequality associated to C. In this document we
will define an induced cover C to be minimal if a (cl(C\{i})) ≤ b, ∀i ∈ C. If
C is a minimal induced cover, we say that inequality (1) is a minimally induced
cover inequality, or MIC inequality for short.

Note that the definition of MIC inequalities that we use coincides with that
used by Park and Park [22]. However, Boyd [9] and van de Leensel et al [18],
require that an induced cover C ⊆ V satisfy a (cl(C)\{i}) ≤ b ∀i ∈ C in order
to be minimal.

Remark 1. Let (G, a, b) represent an instance of PCKP satisfying our working
assumption. If C is a minimal induced cover, then i, j ∈ C implies (i, j) /∈ A.
In fact, if i, j ∈ C and (i, j) ∈ A, then cl(C) = cl(C − {j}), thus contradicting
the minimality of C.

As observed by Bley et al [6], given x∗ ∈ P (G, a, b) it is possible to find
a maximally violated MIC inequality by solving a simple integer programming
problem.

Given any induced cover C, there always exists a minimal induced cover
C ′ ⊆ C. Further, if C ′ is an induced cover and C ′ ( C, then the induced cover
inequality associated to C ′ is stronger than that associated to C. As observed
by Boyd this does not imply that minimal induced cover inequalities are facet-
defining. To see this, consider the example illustrated in Figure 1 and the MIC

5



inequality x15 + x16 + x17 ≤ 2. All feasible points satisfying this inequality at
equality also satisfy x10 = x11 = 1. Since we know that the feasible region
is full dimensional (Theorem 1), it follows that the inequality cannot be facet
defining. Boyd [9] and later Park and Park [22] describe conditions under which
MIC inequalities are facet-defining.

1 2 3 4 5 6 7

8 99 10 11 12 13

14 15 16 17 18

Figure 1: Example PCKP: ai = 1, i = 1, . . . , 18, b = 10, note that C =
{15, 16, 17} is a MIC, but not a facet for the problem. In particular, x3, x4, x5

must be one whenever x15 + x16 + x17 = 2.

In the case that a MIC inequality is not facet-defining it can be strengthened
through lifting techniques to obtain a constraint of form,∑

i∈C
xi +

∑
i∈cl(C)

γi(1− xi) +
∑

j∈V \cl(C)

ηjxj ≤ |C| − 1, (2)

where η, γ are non-negative vectors in RC . Going back to the example illustrated
in Figure 1, we have that if we strengthen the MIC inequality x15+x16+x17 ≤ 2
on x10 and then x11 we obtain the facet-defining inequality x15 + x16 + x17 −
x10 − x11 ≤ 0.

Park and Park [22] showed that given a minimally induced cover C, it is
possible to lift the corresponding MIC inequality on variables xi with i ∈ cl(C)
in polynomial time. Moreover, they showed that this was possible in such a
way as to guarantee that the resulting inequality was as violated as possible.
van de Leesel et al [18] showed that it was possible to speed-up the algorithm
of Park and Park to run in O (|V | log∗ |V |). Park and Park [22] also introduced
a heuristic for lifting xi with i ∈ rcl(C). van de Leesel et al [18] studied the
optimal lifting problem associated to these variables as well as the conditions
required to ensure that the resulting inequality would be facet-defining. van de
Leesel et al [18] also propose a pseudo-polynomial time algorithm for the case
in which G is a tree.

Definition 7. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. We say that C ⊆ V is an induced clique of (G, a, b) if a(cl({i, j})) >
b for all i, j ∈ C such that i 6= j. If C is an induced clique, then valid inequality

x(C) ≤ 1, (3)
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is known as the induced clique inequality associated to C.

Proposition 1. (Boland et al. [7]) Let (G, a, b) define an instance of PCKP
satisfying our working assumptions. If C is an induced clique in (G, a, b) then
i, j ∈ C implies (i, j) /∈ A. Further, i, j ∈ C implies that there is no k ∈ V such
that (k, i) ∈ A and (k, j) ∈ A.

Proof. First, suppose i, j ∈ C and (i, j) ∈ A. Since i, j ∈ C we know a(cl({i, j})) >
b. However, (i, j) ∈ A implies cl(j) ⊆ cl(i), thus cl({i, j}) ⊆ cl({i}). This in
turn implies a(cl({i})) > b which contradicts our working assumptions.
Second, suppose i, j ∈ C and that there exists k ∈ V such that (k, i) ∈ A and
(k, j) ∈ A. In this case cl{i, j} ⊆ cl(k). However, in this case, a(cl({i, j})) > b
implies a(cl({k})) > b, which contradicts our working assumptions. �

Boland et al. [7] observe that it is possible to obtain facet-defining clique
inequalities by up-strengthening induced covers of size 2. Based on this obser-
vation they propose a polynomial-time running heuristic that can generate a
special class of induced clique inequalities.

3 Maximally violated inequalities

In this section we characterize maximally violated inequalities for PCKP. We
begin by describing a partial characterization of maximally violated inequalities
in general, and continue by characterizing some specific properties of maximally
violated induced cover and clique inequalities.

Definition 8. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). Define,

B[x∗] = {i ∈ V : x∗j < x∗i , ∀(j, i) ∈ A}.

We say that B[x∗] is the set of precedence break-points associated to G and x∗.
If j ∈ V is such that there is no arc (i, j) ∈ A, then we assume j ∈ B[x∗]. For
each i ∈ V define,

B[x∗, i] = {j ∈ B(x∗) : (j, i) ∈ A} = B[x∗]
⋂
rcl(i).

Proposition 2. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b).

• For every i /∈ B[x∗], there exists j ∈ B[x∗, i] such that x∗j = x∗i .

• If i, j ∈ V are such that B[x∗, i] = B[x∗, j] then x∗i = x∗j .

Definition 9. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. We say that an inequality αx ≤ β is weight-balanced with respect
to G and x∗ if αi ≤ 0 for all i /∈ B[x∗].
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The following proposition describes an important characterization of maximally-
violated inequalities that we will later see is very helpful for separation.

Proposition 3. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. Consider x∗ ∈ P (G, a, b) and an inequality αx ≤ β valid for
P (G, a, b) ∩ ZV . There exists an inequality ᾱx ≤ β, valid for P (G, a, b) ∩ ZV ,
that is weight-balanced with respect to x∗, and such that, αx∗ = ᾱx∗. Moreover,
ᾱ can be obtained from α by the following recursive procedure: If α is not weight-
balanced with respect to x∗, let i /∈ B[x∗] be such that αi > 0 and let j ∈ B[x∗, i]
such that x∗i = x∗j . Define ᾱ such that ᾱx = αx + αi(xj − xi). If ᾱ is not
weight-balanced, redefine α as ᾱ and repeat.

Proof. Suppose αx ≤ β defines a valid inequality for P (G, a, b) that is not
weight-balanced with respect to x∗. By definition, because αx ≤ β is not weight-
balanced, there must exists i /∈ B[x∗] such that αi > 0. From Proposition 2
we know there exists j ∈ B[x∗, i] such that x∗i = x∗j . Since xj ≤ xi is valid
for P (G, a, b), it follows that αx + αi(xj − xi) ≤ β is valid for P (G, a, b) as
well. Also, it is clear that αx∗ = αx∗ + αi(x

∗
j − x∗i ) = ᾱx∗. That the recursion

terminates follows from the fact that,

|{i /∈ B[x∗] : ᾱi > 0}| < |{i /∈ B[x∗] : αi > 0}|.

�

A point of concern regarding Proposition 3 is that the result is not neces-
sarily closed to specific classes of inequalities. For example, if x(C) ≤ |C| − 1 is
a maximally violated MIC inequality that is not weight-balanced, it is possible
that after applying the weight-balancing procedure described in Proposition 3,
we might obtain an inequality that is not a MIC inequality. The same con-
cern applies to induced clique inequalities. This is addressed in the following
propositions.

Proposition 4. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). Let C be a minimally induced cover.
There exists another minimally induced cover C̄ such that (a) constraint x(C̄) ≤
|C̄| − 1 is weight-balanced and (b) x(C̄) ≤ |C̄| − 1 is at least as violated as
x(C) ≤ |C| − 1.

Proof. Since C is a minimal induced cover we know a(cl(C)) > b. From Proposi-
tion 2 we know that for all i ∈ C there exists j(i) ∈ B[x∗, i] such that x∗i = x∗j(i).

Let C ′ = {j(i) : i ∈ C}. Since (j(i), i) ∈ A for all i ∈ C we know that
cl(C) ⊆ cl(C ′). Since a ≥ 0 it follows that C ′ is an induced cover. Let C̄ ⊆ C ′

be a minimal induced cover. It follows that,∑
i∈C̄

(1− x∗i ) ≤
∑
i∈C′

(1− x∗i ) ≤
∑
i∈C

(1− x∗j(i)) =
∑
i∈C

(1− x∗i ).

Hence, x∗(C̄) − (|C̄| − 1) ≥ x∗(C) − (|C| − 1). Further, since C̄ ⊆ B[x∗] and
all coefficients of inequality x(C̄) ≤ |C̄| − 1 are positive, we conclude that it
weight-balanced. �
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Proposition 5. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). Consider an induced clique C ⊆ V .
There exists another induced clique C̄ ⊆ V such that (a) constraint x(C̄) ≤ 1 is
weight-balanced and (b) constraint x(C̄) ≤ 1 is at least as violated as x(C) ≤ 1.

Proof. Since x(C) ≤ 1 is a valid clique inequality we know that if i, j ∈ C are
such that i 6= j, then a(cl({i, j})) > b. From Proposition 2 we know that for all
i ∈ C there exists j(i) ∈ B[x∗, i] such that x∗i = x∗j(i). Let C̄ = {j(i) : i ∈ C}.
Since (j(i), i) ∈ A for all i ∈ C we know that cl(i) ⊆ cl(j(i)). This implies that
for i, k ∈ C̄ such that i 6= k, we have a(cl{i, k}) > b. Thus x(C̄) ≤ 1 defines
a clique inequality. To see that x(C̄) ≤ 1 is at least as violated, observe that
by Proposition 1 it is not possible to have two vertices i and i′ in C such that
j(i) = j(i′). Hence, ∑

i∈C
x∗i =

∑
i∈C

x∗j(i)

�

4 Shrinking and PCKP

In applying separation algorithms to combinatorial optimization problems de-
fined over graphs it is very helpful to preprocess these graphs in order to reduce
the optimization problem to one that is equivalent, but defined over a smaller
graph. This serves to reduce the number of operations that must be performed.
Given a graph G and a set of vertices S ⊆ V let G/S denote the graph ob-
tained by contracting the set S into a single node s and deleting any self-loop
edges that appear. This operation is called shrinking S in G, and has been used
with great success in solving large-scale integer programming problems such
as the Traveling Salesman Problem [21, 11]. In this section we describe how
shrinking can be defined in the context of PCKP. As we will see, the notion of
weight-balanced inequalities plays a key role in shrinking.

Theorem 2. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). Let S be a family of sets defining a
partition of V such that if i, j ∈ S then x∗i = x∗j . Let Ḡ = (V̄ , Ā) be the graph

obtained from contracting the sets S ∈ S, and let ā ∈ ZV̄ defined by āS = a(S).
Note that (Ḡ, ā, b) defines an instance of PCKP.

• Let z∗ ∈ RV̄ be defined such that z∗S = x∗i , ∀i ∈ S, ∀S ∈ S. Then,
z∗ ∈ P (Ḡ, ā, b). We will say that Ḡ, ā, and z∗ are obtained from G, a,
and x∗ by shrinking the partition S.

• Consider an inequality αx ≤ β valid for P (G, a, b)∩ZV . Define ᾱS = α(S)
for each S ∈ S. Then, ᾱz ≤ β is valid for P (Ḡ, ā, b) ∩ ZV̄ . Moreover,
αx∗ = ᾱz∗.
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Proof. It is clear that z∗ ∈ [0, 1]V̄ . Furthermore,

āz∗ =
∑
S∈S

āSz
∗
S =

∑
S∈S

(∑
i∈S

ai

)
z∗S =

∑
S∈S

∑
i∈S

aix
∗
i =

∑
i∈V

aix
∗
i = ax∗ ≤ b (4)

Now, consider (S, T ) ∈ Ā. Then, there exist i ∈ S and j ∈ T such that (i, j) ∈ A,
which implies z∗S = x∗i ≤ x∗j = z∗T . This proves that z∗ ∈ P (Ḡ, ā, b).

Consider an inequality αx ≤ β valid for P (G, a, b)∩ZV . First, observe that
αx∗ = ᾱz∗. This can be proved replacing a and ā by α and ᾱ in equation (4).

Let z ∈ P (Ḡ, ā, b) ∩ ZV̄ and define y ∈ [0, 1]V as yi = zS ∀i ∈ S, ∀S ∈ S.
We first prove that y ∈ P (G, a, b) ∩ ZV . In fact, replacing x∗ and z∗ by y and
z in equation (4), we prove that ay ≤ b. Finally, for each (i, j) ∈ A either i and
j are in the same set S ∈ S, or in different sets. In the first case, yi = yj = zS ,
so in particular it satisfies yi ≤ yj . In the second case, suppose that i ∈ S and
j ∈ T . Since (i, j) ∈ A then (S, T ) ∈ Ā, so yi = zS ≤ zT = yj .

Now, since y ∈ P (G, a, b) it follows that αy ≤ β. Thus, replacing a, ā, x∗

and z∗ by α, ᾱ, y and z respectively in equation (4), we obtain:

ᾱz =
∑
S∈S

ᾱSzS =
∑
S∈S

(∑
i∈S

αi

)
zS =

∑
S∈S

∑
i∈S

αiyi =
∑
i∈V

αiyi = αy ≤ β

�

As shown in Theorem 2, if there exists a violated inequality for PCKP, then
there exists a violated inequality for the shrunken graph. This result, however,
does not imply that every violated constraint in the shrunken problem can be
mapped back to a violated constraint in the original variable space. This issue
is addressed in the following theorem. Before, however, we need to show how
it is possible to define a partition of V such that it is safe to perform shrinking
for PCKP.

Definition 10. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). For each i ∈ V define,

Πi = {j ∈ V : B[x∗, i] = B[x∗, j]}.

As immediately follows from Proposition 2, the family of sets S = {Πi}i∈V
defines a partition of V . Moreover, every S ∈ S is such that i, j ∈ S implies
x∗i = x∗j . We say that the family of sets S defines the canonical partition of V
implied by G and x∗.

Theorem 3. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider x∗ ∈ P (G, a, b). Let S represent the canonical parti-
tion of V defined by G and x∗. Let Ḡ = (V̄ , Ā), ā and z∗ be obtained from G, a
and x∗ by shrinking partition S as described in Theorem 2. For each set S ∈ S
let us choose iS ∈ S such that (j, iS) ∈ A implies j /∈ S. Finally, let ᾱz ≤ β be
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0.1 0.7 0.7 0.1 0.1

Figure 2: Example of a canonical partition of V implied by G and x∗. The values
of x∗ are written inside the vertices. The vertices in B[x∗] are represented as
rectangles.

a valid inequality for P (Ḡ, ā, b) ∩ ZV̄ that is weight-balanced with respect to z∗.
Define,

αi =

{
ᾱS if i = iS for some S ∈ S,
0 otherwise.

Then, inequality αx ≤ β is valid for P (G, a, b) ∩ ZV and weight-balanced with
respect to x∗. Moreover, αx∗ = ᾱz∗.

Proof. It is easy to see that αx∗ = ᾱz∗. First, we prove that αx ≤ β is weight-
balanced with respect to x∗. We only need to prove that if i /∈ B[x∗] and i = iS
for some S ∈ S then αi ≤ 0. In fact, there must exists j ∈ T 6= S such that
(j, i) ∈ A and x∗i = x∗j . But, this means that (T, S) ∈ Ā and z∗S = z∗T , so S /∈
B[z∗]. Since ᾱz ≤ b is weight-balanced with respect to z∗, then αi = ᾱS ≤ 0.

Secondly, we focus on showing αx ≤ β is valid for P (G, a, b) ∩ ZV . For this
consider x ∈ P (G, a, b) ∩ ZV and let F = {i ∈ B[x∗] : xi = 1}. Define:

x̂i =

{
1 if i ∈ cl(F ),
0 otherwise.

Also define ẑ ∈ ZV̂ so that ẑS = x̂iS for each S ∈ S. An outline of this proof is as
follows: We first prove (a) x̂ ∈ P (G, a, b). From this follows (b) ẑ ∈ P (Ḡ, ā, b).
We then show (c) αx̂ ≥ αx and (d) αx̂ = ᾱẑ. From (c),(d) and (b) it follows
that αx ≤ αx̂ = ᾱẑ ≤ β, with which we conclude.

(a) By definition x̂ is the incidence vector of the smallest closure containing
F . Since it is the incidence vector of a closure, x̂ satisfies all precedence
constraints. Further, since x is also the incidence vector of a closure
containing F we know that x̂ ≤ x. That ax̂ ≤ b follows from this and
a ≥ 0.

(b) We first show that (S, T ) ∈ Ā and S 6= T imply ẑS ≤ ẑT . We only need
concern ourselves with the case ẑS = 1. In this case x̂iS = 1, and so, by
how x̂ was constructed, there exists k ∈ B[x∗, iS ] such that x̂k = 1. On

11



the other hand, (S, T ) ∈ Ā implies there exists (i, j) ∈ A such that i ∈ S
and j ∈ T . Since S 6= T and (i, j) ∈ A we know B[x∗, i] ( B[x∗, j]. This,
however, implies that k ∈ B[x∗, iS ] = B[x∗, i] ( B[x∗, j] = B[x∗, iT ] and
so x̂iT = 1. With this we conclude ẑT = 1. Second, we must show that
āẑ ≤ b. For this, it suffices to show that x̂iS ≤ x̂i for all i ∈ S. In fact,
this implies that,

āẑ =
∑
S∈S

āS ẑS =
∑
S∈S

(∑
i∈S

ai

)
x̂iS ≤

∑
S∈S

∑
i∈S

aix̂i = ax̂ ≤ b

Consider S ∈ S. To prove that x̂iS ≤ x̂i for all i ∈ S we only need to
consider when x̂iS = 1. From the definition of x̂ we know x̂iS = 1 implies
there exists k ∈ B[x∗, iS ] such that x̂k = 1. Since B[x∗, iS ] = B[x∗, i] for
all i ∈ S, it follows that k ∈ B[x∗, i] for all i ∈ S. From this we conclude
x̂i = 1 for all i ∈ S.

(c) Note that D = {i ∈ V : xi > x̂i} ⊆ V \ B[x∗]. Since αx ≤ β is weight-
balanced with respect to x∗, it follows that αi ≤ 0 for all i ∈ D. Thus,
αx̂ ≥ αx.

(d) In fact, ∑
i∈V

αix̂i =
∑
S∈S

αiS x̂iS =
∑
S∈S

ᾱS ẑS

�

5 A simple mechanism for strengthening valid
inequalities

Given a valid inequality αx ≤ β for P (G, a, b)∩ZV with α ∈ ZV , β ∈ Z+, in this
section we are concerned with quickly finding a stronger inequality α′x ≤ β′ that
is also valid for P (G, a, b) ∩ ZV . The mechanism we introduce requires solving
a single instance of a maximum closure problem, as described in the following
theorem.

Theorem 4. Let (G, a, b) define an instance of PCKP satisfying our working
assumptions. Let αx ≤ β be a valid inequality for P (G, a, b) ∩ ZV , and let
S = {i ∈ V : αi 6= 0}. Let x̂ be an optimal solution to problem,

max αx
s.t. xi ≤ xj ∀(i, j) ∈ A

xi ∈ {0, 1} ∀i ∈ V,
(5)

such that I(x̂) = {i ∈ V : x̂i = 1} is minimal inclusion-wise. Then, inequality∑
i∈I(x̂)

αixi ≤ β (6)

is valid for P (G, a, b) ∩ ZV . Moreover, if I(x̂) ( S, then constraint (6) is
stronger than constraint αx ≤ β.
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Proof. We first show that (6) is valid for P (G, a, b) ∩ ZV . In fact, consider
x ∈ P (G, a, b) ∩ ZV and let I(x) = {i ∈ V : xi = 1}. Since I(x̂) and I(x) are
both closures, we know that I(x)∩ I(x̂) is also a closure. Define x′ ∈ {0, 1}V so
that x′i = 1 iff i ∈ I(x) ∩ I(x̂). Since x′ ≤ x and a ≥ 0 we know that ax′ ≤ b
and so x′ ∈ P (G, a, b) ∩ ZV . From all this it follows that,∑

i∈I(x̂)

αixi =
∑

i∈I(x̂)∩I(x)

αixi =
∑
i∈V

αix
′
i ≤ β.

We now show that if I(x̂) ( S, then constraint (6) is stronger than constraint
αx ≤ β. For this we first show that there exists z ∈ P (G, a, b) ∩ ZV such that
αz <

∑
i∈I(x̂) αizi. Since I(x̂) ( S, we know that there exists i ∈ S \ I(x̂) such

that αi 6= 0. Since x̂ is an optimal solution of (5), we know that α(cl(i)\I(x̂)) ≤
0. Moreover, we can assume that this i ∈ S \ I(x̂) is such that for all (i, j) ∈ A
then j ∈ I(x̂) or αj = 0. In this case, α(cl(i)\I(x̂)) = ai < 0. Define z ∈ {0, 1}V
so that zi = 1 iff i ∈ cl(i). Since cl(i) is by definition a closure, and since az ≤ b,
we know that z ∈ P (G, a, b) ∩ ZV . On the other hand,

αz =
∑

i∈cl(i)∩I(x̂)

αi +
∑

i∈cl(i)\I(x̂)

αi <
∑

i∈cl(i)∩I(x̂)

αi =
∑
i∈I(x̂)

αizi

Finally, we show that for any x ∈ P (G, a, b)∩ZV such that αx = β we have∑
i∈I(x̂) αixi = β. Let I(x) = {i ∈ I : xi = 1}. Note that α(I(x) \ I(x̂)) ≤

0. Otherwise, we would have that α(I(x) ∪ I(x̂)) > α(I(x̂)), which, because
I(x̂) ∪ I(x) is a closure, contradicts the optimality assumption of x̂. From this
we have that,

αx =
∑

i∈S∩I(x)

αixi =
∑
i∈I(x̂)

αixi +
∑

i∈I(x)\I(x̂)

αixi ≤
∑
i∈I(x̂)

αixi ≤ β

Thus αx = β and
∑

i∈I(x̂)

αixi = β, and we conclude our result. �

6 Lifting and PCKP

Definition 11. Let P (G, a, b) define an instance of PCKP satisfying our work-
ing assumptions. Consider disjoint sets O, I ⊆ V and define,

P (G, a, b, O, I) = {x ∈ P (G, a, b) : xi = 1 ∀i ∈ I, xi = 0 ∀i ∈ O}.

Assume I,O ⊆ V are such that P (G, a, b, O, I)∩ZV is non-empty, and consider
an inequality αx ≤ β valid for P (G, a, b, O, I)∩ZV . We say that lifting inequality
αx ≤ β consists in computing coefficients γ, η ≥ 0 such that γ 6= 0 or η 6= 0,
and such that inequality

αx+
∑
i∈I

γi(1− xi) +
∑
j∈O

ηjxj ≤ β, (7)

is valid for P (G, a, b) ∩ ZV .
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For an introduction to lifting, see [24, 25, 15]. Lifting in the context of PCKP
can be used to serve two important purposes:

• Strengthening valid inequalities. Consider an inequality αx ≤ β that
is valid for P (G, a, b)∩ZV , but that is not facet-defining. If P (G, a, b, I, O)∩
ZV is non-empty for sets I,O ⊆ V , lifting can be used to strengthen in-
equality αx ≤ β. Such a strengthening procedure would correspond to
tilting [15] inequality αx ≤ b in directions (1 − ei) and ej for i ∈ I and
j ∈ O. This use of lifting has been studied by Boyd [9], Park and Park [22],
van de Leesel et al [18] and Boland et al. [8] in the context of induced cover
inequalities, K-covers, (1,K)-configurations and induced clique inequali-
ties.

• Speeding up the computation of cutting planes. Consider a non-
integral solution x̄ ∈ P (G, a, b). Let I = {i ∈ V : x̄i = 1} and O =
{i ∈ V : x̄i = 0}. It is well known that a cutting plane separating x̄
from P (G, a, b, O, I) ∩ ZV exists if and only if a cutting plane separating
x̄ from P (G, a, b) exists. From a computational point of view, it could
be easier to compute a cutting plane separating x̄ from P (G, a, b, O, I) ∩
ZV , since this results in solving a separation problem of lower dimension.
If the separation algorithm in P (G, a, b, O, I) is successful we obtain an
inequality αx ≤ b that is valid for P (G, a, b, O, I)∩ZV , and violated by x̄.
Lifting, we obtain an inequality of form (7) that is valid for P (G, a, b)∩ZV
and violated by x̄.

In order for lifting to be computationally effective it should be quick. In this
section we describe simple techniques for quick lifting in the context of PCKP.
In Section 6.1 we describe simple relaxations of the lifting problem that are easy
to solve. In Section 6.2 we characterize those variables that can be lifted and
those that cannot. Finally, in Section 6.3 we present an argument for lifting in
a greedy manner so as to obtain highly-violated inequalities.

6.1 Optimal lifting and relaxed lifting of a single variable

Definition 12. Let (G, a, b) define an instance of PCKP satisfying our work-
ing assumptions, and consider i ∈ V . Assume inequality αx ≤ β is valid for
P (G, a, b) ∩ {x : xi = 1} ∩ ZV . Down-lifting variable i in constraint αx ≤ β
consists in computing a coefficient γi such that

αx+ γi(1− xi) ≤ β ∀x ∈ P (G, a, b) ∩ ZV . (8)

Optimally down-lifting variable i consists in computing the largest possible lift-
ing coefficient γi. This can be done by solving,

zi = max αx
s.t. xi = 0

x ∈ P (G, a, b) ∩ ZV
(9)
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and defining γi = β − zi. Observe that if αx ≤ β is valid for P (G, a, b) ∩ ZV ,
then γi ≥ 0. Moreover, if γi > 0, then constraint (8) is strictly stronger than
αx ≤ β.

The problem with optimal down-lifting is that solving each instance of (9)
could potentially be very difficult. An alternative is to lift in a non-optimal way
by solving a relaxation of (9). That is, by replacing constraint x ∈ P (G, a, b) ∩
ZV by a weaker constraint x ∈ R(G, a, b) where P (G, a, b) ∩ ZV ⊆ R(G, a, b),
and solving the relaxed down-lifting problem with respect to to R(G, a, b),

wi = max αx
s.t. xi = 0

x ∈ R(G, a, b).
(10)

If wi > 0, then γi = βi − wi is still a valid lifting coefficient. Although γi
might be a weaker coefficient, if R(G, a, b) is chosen appropriately, it should be
computationally easier to obtain. The first relaxation R(G, a, b) we consider is,

RLP (G, a, b) =
{
x ∈ [0, 1]V : ax ≤ b, xi ≤ xj ∀(i, j) ∈ A

}
. (11)

In relaxation (11) we relax the integrality condition x ∈ {0, 1}V . Solving (9)
subject to this relaxation can be done using the Critical Multiplier Algorithm
proposed by Chicoisne et al. [10], which runs in O(mn log n).

Remark 2. In some cases, the use of relaxation (11) may result in a coefficient
γ that is not integral. If the original constraint αx ≤ β is such that α and β
are both integer (as is the case of induced cover and induced clique inequalities)
this results in an opportunity to further strengthen the resulting inequality. In
fact, if a coefficient γi is fractional, and all other lifted coefficients so far are
integral, γi can be rounded up to obtain a stronger, integral coefficient. That
this new coefficient is valid can be proved using a simple argument: Add a con-
straint εxi ≤ ε to the lifted inequality, choosing ε so that the fractional left-hand
side coefficient becomes integer. Then, round the right-hand side down applying
Gomory’s Rounding Procedure to obtain the desired result.

A second relaxation to consider is that proposed by Park and Park [22].

Rα,β(G, a, b) =
{
x ∈ {0, 1}V : αx ≤ β, xi ≤ xj ∀(i, j) ∈ A, i, j ∈ cl(α)

}
,

(12)
where αx ≤ β is the valid inequality for P (G, a, b)∩ZV to be lifted. Using this
relaxation amounts to solving,

zi = max αx
s.t. αx ≤ β

xk ≤ xj ∀(k, j) ∈ A, i, j ∈ cl(α)
x ∈ {0, 1}V .

(13)

It is not difficult to see that the solution to (13) is of the form

zi = min{β,max{αx : xk ≤ xj ∀(k, j) ∈ A, k, j ∈ cl(α), x ∈ [0, 1]V }},

thus it only requires solving a single max-closure problem.
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Definition 13. Let P (G, a, b) define an instance of PCKP satisfying our work-
ing assumptions, and consider i ∈ V . Assume inequality αx ≤ β is valid for
P (G, a, b)∩{x : xi = 0}∩ZV . Up-lifting variable i in constraint αx ≤ β consists
in computing a coefficient ηi such that

αx+ ηixi ≤ β ∀x ∈ P (G, a, b) ∩ ZV . (14)

Optimally up-lifting variable i consists in computing the largest possible lifting
coefficient ηi. This can be done by solving,

wi = max αx
s.t. xi = 1

x ∈ P (G, a, b) ∩ ZV
(15)

and defining ηi = β − wi. Observe that if αx ≤ β is valid for P (G, a, b) ∩ ZV ,
then ηi ≥ 0. Moreover, if ηi > 0, then constraint (14) is strictly stronger than
αx ≤ β.

As in optimal down-lifting, solving each instance of (15) can be very difficult.
As before, an alternative is to solve a relaxed lifting problem using RLP (G, a, b)
or Rα,β(G, a, b).

6.2 Selecting which variables to lift.

The following Lemma says that if αx ≤ β is a face-defining inequality, it only
makes sense to down-lift a very specific set of variables.

Lemma 1. Let P (G, a, b) define an instance of PCKP satisfying our work-
ing assumptions, and consider i ∈ V . Assume inequality αx ≤ β is valid for
P (G, a, b) ∩ ZV and that there exists x̄ ∈ P (G, a, b) ∩ ZV such that αx̄ = β. Fi-
nally, let S+ = {s ∈ V : αs > 0}. Let γi be the optimal down-lifting coefficient
for variable i in constraint αx ≤ β. If i /∈ cl(S+) then γi = 0.

Proof. Define x̂ ∈ ZV as follows,

x̂j =

{
0 if j ∈ rcl(i)
x̄j otherwise.

First, note that the support of x̂ defines a closure, since it is obtained by re-
moving a reverse closure from a closure. Second, note that ax̂ ≤ b since a ≥ 0
and x̂ ≤ x̄. These two facts imply that x̂ ∈ P (G, a, b) ∩ ZV , and αx̂ ≤ β. Next,
note that αx̂ = β. In fact, let S = {s ∈ V : αs 6= 0}. It is easy to see that if
i /∈ cl(S+) then rcl(i) ∩ S+ = ∅ and rcl(i) ∩ S ⊆ S \ S+. Hence,

αx̂ =
∑
j∈S

αj x̂j =
∑

j∈S\rcl(i)

αj x̂j =
∑

j∈S\rcl(i)

αj x̄j ≥
∑
j∈S

αj x̄j = β.

Thus, since x̂ ∈ P (G, a, b) ∩ ZV and since αx ≤ β is valid for P (G, a, b) ∩ ZV ,
we conclude αx̂ = β. Moreover, since x̂i = 0 and αx̂ = β, we conclude that x̂
is an optimal solution of Problem 9 with objective β, where we conclude that
γi = 0. �
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The following Lemma gives a similar result for up-lifting.

Lemma 2. Let P (G, a, b) define an instance of PCKP satisfying our working
assumptions, and consider i ∈ V . Let S = {s ∈ V : αs 6= 0}. Assume inequality
αx ≤ β is valid for P (G, a, b) ∩ ZV and that for all j ∈ S there exists xj ∈
P (G, a, b) ∩ {xj = 1} ∩ ZV such that αxj = β. Let ηi be the optimal up-lifting
coefficient for variable i in constraint αx ≤ β. If i ∈ cl(S) then ηi = 0.

Proof. Since i ∈ cl(S), there exists j ∈ S such that i ∈ cl({j}). Consider
xj ∈ P (G, a, b) ∩ {xj = 1} ∩ ZV such that αxj = β (as in the hypothesis).
Since i ∈ cl({j}) we also have that xj is in P (G, a, b) ∩ {xi = 1} ∩ ZV . Thus,
xj is feasible for problem (15), and since it has objective function value β we
conclude it is also optimal. Hence ηi = 0. �

Note that induced cover inequalities and induced clique inequalities satisfy
the conditions required by the two previous Lemmas.

x1 = 0.8 x2 = 0.8 x3 = 0.6 x4 = 0.6 x5 = 0.6

x6 = 0.8 x7 = 0.9 x8 = 0.9

x9 = 0.9 x10 = 1.0

Figure 3: Example of a fractional solution for the PCKP instance with the graph
shown in the figure and knapsack constraint

∑
{xi : i = 1, . . . , 10} ≤ 8.

6.3 Choosing a lifting order

We are now ready to address the following two important questions: Is the
lifting order important when strengthening valid inequalities through lifting?
If so, which is the best ordering of the variables in which to do lifting? To
answer the first question consider the instance of PCKP and the corresponding
fractional solution depicted in Figure 3. Suppose we would like to strengthen
the following inequality that is valid for P (G, a, b) ∩ ZV :

x1 + x2 + x3 + x4 + x5 ≤ 3. (16)

Note that this inequality is violated by the fractional solution by 0.4. Lemma 2
shows that we should only consider down-lifting variables x6, x7, x8, x9 and x10.
Moreover, optimally down-lifting variable xk is the same as solving the problem

γk = 3− max x1 + x2 + x3 + x4 + x5

s.t. x ∈ P (G, a, b) ∩ {xk = 0}.
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If we optimally down-lift (in order) variables x6, x7, x8, x9 and x10, we obtain
the (facet-defining) inequality

x1 + x2 + x3 + x4 + x5 − x6 − x7 − x8 ≤ 0,

which is violated by 0.8. If, instead, we optimally down-lift in the same variables
in reversed order (e.g., x10, x9, x8, x7, x6), we obtain the valid inequality

x1 + x2 + x3 + x4 + x5 − x9 − 2x10 ≤ 0 (17)

which is violated by 0.5. What this shows is that, in general, the resulting
inequality, and the amount by which it is violated, is dependent of the lifting
order. So the question of choosing an appropriate lifting order is very relevant.
Again, let use the same example as before. We know that if we optimally down-
lift x10 and then x9 we obtain inequality (17), which is violated by 0.5. If,
instead, we optimally down-lift variables x9 and x10 we obtain inequality,

x1 + x2 + x3 + x4 + x5 − 2x9 − x10 ≤ 0. (18)

This equality is violated by 0.6. That is, lifting x9 before x10 results in an
inequality that is more violated. This is because we are down-lifting and because
(1−x∗10) < (1−x∗9). It turns out that this (pairwise) greedy way of lifting always
results in an inequality that is more violated. This is explained in the following
Lemma.

Lemma 3. Consider an inequality αx ≤ β that is valid for P (G, a, b)∩{0, 1}n.
Let R be an integral polyhedral relaxation of P (G, a, b). That is, let R be a
polyhedron such that P ⊆ R and such that the extreme points of R are integral.
Let x∗ ∈ P (G, a.b), and suppose we want to solve the relaxed lifting problem for
variables xi and xj.

1. If (1−x∗i ) ≥ (1−x∗j ), down-lifting xi and then down-lifting xj results in an
inequality with violation that is equal to or greater than the violation of the
inequality that would be obtained by down-lifting xj and then down-lifting
xi.

2. If x∗i ≥ x∗j , up-lifting xi and then up-lifting xj results in an inequality with
violation that is equal to or greater than the violation of the inequality that
would be obtained by up-lifting xj and then up-lifting xi.

3. If (1 − x∗i ) ≥ x∗j , down-lifting xi and then up-lifting xj results in an in-
equality with violation that is equal to or greater than the violation of the
inequality that would be obtained by down-lifting xj and then up-lifting xi.

Proof. We assume that αx ≤ β is valid for P (G, a, b) ∩ {0, 1}n and that i, j ∈
{1, . . . , n} are two index of variables in P (G, a, b). To prove our result, we need
some previous definitions:

Let
Zpq = min {β,max{αx : x ∈ R, xi = p, xj = q}} ,

Note that Zpq can be seen as a bound of the maximum value of αx attainable
in P (G, a, b) ∩ {0, 1}n ∩ {xi = p, xj = q}. With this, we prove each part of
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Lemma 3 by showing that the sum of the lifting coefficients remains constant
when we exchange the order of lifting between two consecutive variables.

1. We call γi, γj the lifting coefficients for xi, xj obtained when first down-
lifting xi, and then xj , and δi, δj the lifting coefficients for xi, xj obtained
when first down-lifting xj and then xi. We will prove that δi+δj = γi+γj .
For this, note that

γi = (β −max{Z00, Z01})
γj = (β − γi −max{Z00, Z10 − γi})
δj = (β −max{Z00, Z10})
δi = (β − δj −max{Z00, Z01 − δj})

Hence,

γi + γj = β −max{Z00, Z10 − γi}
= β −max{Z00, Z10 − β + max{Z00, Z01}}
= β −max{Z00, Z10 − β + Z00, Z10 − β + Z01}}
= β −max{Z00, Z00 − (β − Z10), Z10 + Z01 − β}}

But, since β ≥ Z10, we conclude that

γi + γj = β −max{Z00, Z10 + Z01 − β}}

Since δi and δj are obtained from γi and γj by swapping Z10 and Z01, we
conclude that δi + δj = γi + γj .

2. We call γi, γj the lifting coefficients for xi, xj obtained when first up-lifting
xi and then xj , and δi, δj the up-lifting coefficients for xi, xj obtained when
first lifting xj and then xi. We will prove that δi + δj = γi + γj .
For this, note that

γi = (β −max{Z10, Z11})
γj = (β −max{Z01, Z11 + γi})
δj = (β −max{Z01, Z11})
δi = (β −max{Z10, Z11 + δj}) .

Hence,

γi + γj = 2β −max{Z10, Z11} −max{Z01, Z11 + β −max{Z10, Z11}}
= 2β −max{Z01 + max{Z10, Z11}, Z11 + β −max{Z10, Z11}+ max{Z10, Z11}}
= 2β −max{Z01 + Z10, Z01 + Z11, Z11 + β}

But, since β ≥ Z01, we conclude that

γi + γj = 2β −max{Z01 + Z10, Z11 + β}

Again, since δi and δj are obtained from γi and γj by swapping Z10 and
Z01, we conclude that δi + δj = γi + γj .
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3. We call γi, γj the lifting coefficients for xi, xj obtained when first down-
lifting xi, and then up-lifting xj , and δi, δj the up-lifting coefficients for
xi, xj obtained when first up-lifting xj and then down-lifting xi. We will
prove that δi + δj = γi + γj .
For this, note that

γi = (β −max{Z00, Z01})
γj = (β − γi −max{Z01, Z11 − γi})
δj = (β −max{Z01, Z11})
δi = (β −max{Z00, Z01 + δj}) .

Hence,

γi + γj = β −max{Z01, Z11 − β + max{Z00, Z01}}
= β −max{Z01, Z11 − β + Z00, Z11 − β + Z01}
= β −max{Z01, Z11 − β + Z00, Z01 − (β − Z11)}

But, since β ≥ Z11, we conclude that

γi + γj = β −max{Z01, Z11 − β + Z00}}

On the other hand,

δi + δj = β −max{Z01, Z11}+ β −max{Z00, Z01 + β −max{Z01, Z11}}
= 2β −max{Z00 + max{Z01, Z11}, Z01 + β −max{Z01, Z11}+ max{Z01, Z11}}
= 2β −max{Z00 + Z01, Z00 + Z11, Z01 + β}
= β −max{Z00 + Z01 − β, Z00 + Z11 − β, Z01}
= β −max{Z01 − (β − Z00), Z00 + Z11 − β, Z01}

But, since β ≥ Z00, we conclude that

δi + δj = β −max{Z00 + Z11 − β, Z01}

from where δi + δj = γi + γj .
This proves our result. �

An important limitation of Lemma 3 is that it is only true when it comes
to lifting pairs of variables. That is, if we want to lift three or more variables,
it is not clear if lifting in a greedy manner will result in an inequality that is
most violated with respect to all possible permutations of lifting orders. Park
and Park [22] prove that in the case of lifting Induced Cover Inequalities it is
indeed true that greedy lifting orders (for down-lifting variables) result in max-
imally violated inequalities. However, it remains an open question to determine
whether it is true in general or not.
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