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Abstract

We propose an integrated stochastic equilibrium model considering private car
traffic as well as transit networks, where the interaction appears at two levels,
namely total travel times as well as modal share. The assignment for traffic
equilibrium is based on the MTE model of Baillon and Cominetti (2008), while
the equilibrium on the transit network is represented by the STE model by
Cortés et al. (2013). Stochastic travel decisions are made at a node level, avoid-
ing enumeration of routes or strategies and incorporating different perceptions
and uncertainty issues. In the general version of our model, travelers are allowed
to change from car to transit at specific locations in a park and ride scheme.
We propose an MSA algorithm to calculate a stochastic integrated equilibrium
and conduct numerical experiments on real networks that highlight the effect
of stochasticity on equilibrium flows and travel times. Our experiments show
that higher stochasticity implies more dispersion on equilibrium flows and longer
expected travel times.
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1. Introduction

In the last decades, many cities over the world have grown considerably

in terms of both population and land deployment, generating new necessities
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and requirements of transportation provision for the inhabitants of the different

cities, most of them affected by serious traffic congestion during rush hours;

this observed fact has motivated the interest of researchers and practitioners

in modeling urban networks at different scales for various purposes. In this

context, the use of urban planning models to assess investment policies for

improving the welfare of people has become an important issue. At a strategic

level of analysis, the so-called assignment and equilibrium users models are

designed to reproduce the observed behavior and choices of individuals with

regard to transit and traffic networks; on the one hand, transit equilibrium

models seek to reproduce the boarding and alighting stops and routes choices,

in terms of transit lines used, while on the other, traffic equilibrium models seek

to reproduce the routes choices over the urban road network.

There is abundant literature on assignment and equilibrium models exploring

pure modes, mainly for the case of traffic networks, which generally relies on the

Wardrop’s principle, indicating that rational users choose routes that minimize

their expected travel time. In turn, many of the existing transit equilibrium

models have adopted this principle. However, between traffic and transit modes

there is an irremediable difference: while in the case of traffic, choosing the

route that minimizes the on-board expected travel time is enough, in the transit

dimension the route choice is defined by the particular bus that a passenger

boards, within a set of different common lines that serve a bus-stop that can

be used to reach the destination. Then, in addition to considering the on-board

travel time on the vehicle, in the transit dimension the waiting time also plays

an important role, which is linked to other variables inherent to any transit

system, such as frequency and bus capacity.

In terms of transit users behavior, most recent literature has been aimed at

modeling the preferences assuming that passengers choose a route strategy for

their trips. Originally, Spiess and Florian (1989) define a strategy as a set of rules

that, when applied, allow a passenger to reach his(her) destination, and decisions

are made at each intermediate node where that passenger boards a bus. A well-

formulated strategy includes the choice of the attractive lines set at a stop, as
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described by Chriqui and Robillard (1975), and besides, this notion implies that

users have a completely knowledge of the network structure and the conditions

for recognizing and using effective strategies (Bouzäıene-Ayari et al., 2001). The

problem of minimizing the expected generalized cost of transit passengers can be

modeled as a user equilibrium in the hyperpaths space, a concept introduced by

Nguyen and Pallotino (1988). An hyperpath is an acyclic graph that connects an

origin to a destination, and reflects a strategy to be followed by a particular user.

This description can assimilate the passengers assignment problem on a transit

network to a standard vehicle assignment problem in the traffic dimension.

Early studies in this area underestimate a relevant aspect present in the pas-

sengers assignment process, which is the congestion that occurs in stops when

the bus capacity is not enough to serve the whole demand. The first models

(Nguyen and Pallotino, 1988; Spiess and Florian, 1989) work reasonably well

under low demand scenarios at bus stops; if this is not the case, there may be

passengers unable to board the first bus that belong to the set of attractive lines,

which obviously increases their waiting times. De Cea and Fernández (1993)

incorporate congestion at bus stops, assuming that passengers travel through a

sequence of intermediate nodes, allowing choices within a set of common lines

at a stop only if they all share the next stop to be served. However, the set

of common lines is computed through a heuristic approach, and therefore equi-

librium conditions are not guaranteed. Cominetti and Correa (2001) develop

a transit equilibrium model based on hyperpaths that explicitly includes the

effects of congestion by means of a queuing model at bus stops. In addition,

the general equilibrium model allows multiple origins and destinations, tran-

sit lines overlapped in certain routes segments, and transfers at intermediate

nodes. The resolution of the model is performed using a dynamic program-

ming approach and the authors prove the existence of a user equilibrium in

the network. Cepeda et al. (2006) extend the previous model, obtaining a new

characterization of equilibrium by formulating an optimization problem, which

leads to a gap function that vanishes when equilibrium is reached. These models

consider that passengers always choose the optimal strategy or hyperpath that
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minimizes the generalized travel costs, leading to a deterministic approach.

Cortés et al. (2013) extend the latter model, proposing a stochastic approach

that considers both congestion at bus stops and a stochastic behavior of pas-

sengers during the boarding process. This model is denoted Stochastic transit

equilibrium (STE) and reflects the perception of passengers related to the level

of service of a specific line, including facts like traffic conditions of the transit

network, reliability of the line, etc. The model includes stochasticity by means of

a probability distribution associated with boarding a bus belonging to a specific

line, which can be characterized by the frequency observed in a given stop along

with the expected travel time to the next stop. That formulation generates a

stochastic common lines problem, in which each line has a probability of being

chosen by a passenger, even if the quality of service is poor. In addition, the

formulation incorporates capacity constraints at stops. A significant difference

between this formulation and similar deterministic approaches in the literature

is that it is no longer necessary to enlist all the feasible strategies. This is pos-

sible because the expected travel time values can be analytically computed for

a given destination together with the equilibrium flows on each line, solving a

simultaneously set of common lines problems, interrelated by flow conservation

constraints at each node. Moreover, Cortés et al. (2013) propose an algorithm

to find the stochastic equilibrium.

In the field of vehicle assignment on traffic networks, the trend has been in

the development of stochastic models, considering variability among users to

perceive the travel costs. Dial (1971) was a pioneer in formulating a stochastic

assignment model that excludes the congestion effects, in which the demand

of each origin-destination pair is distributed using a discrete route-based logit

choice model. This model was extended by Fisk (1980) for flow-dependent

costs, which leads to an equivalent formulation of an optimization problem.

The assumption behind such models is that the error terms in routing costs

are independent Gumbel random variables. However, this assumption is highly

unlikely when there are overlapping routes, and therefore Daganzo and Sheffi

(1977) proposed an alternative model based on a probit formulation for the
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stochastic assignments, computed by simulations.

The previous models for stochastic traffic assignment are mostly route-based

models. Hence, it is assumed that users a priori choose an optimal route from

their origins; this approach involves several problems: first, in models based on

either logit or probit assignments, there always exist a probability of choosing

a route, even if that route has a very high cost relative to the others. Second,

these models assume independent paths, even if they have overlapping segments,

existing an obvious correlation. And finally, these models require paths enumer-

ation, which can become computationally impractical for large enough networks.

To address these difficulties, Baillon and Cominetti (2008) propose a stochastic

traffic equilibrium model based on discrete choice under a sequential arcs selec-

tion process at each intermediate node, instead of basing the decision on the

entire route. This process is governed by an embedded Markov chain, and so the

authors called the model Markovian traffic equilibrium (MTE). They prove that

this formulation leads to a strictly convex minimization problem which avoids

paths enumeration, proposing also computational methods that are effective

even for large networks.

In multimodal user equilibrium models, significant advances over the past

four decades have been observed (Florian, 1977; Florian and Spiess, 1983; Wong,

1998). These models assume that passengers will only choose pure modes to

perform the entire trip, using a logit formulation to obtain the proportion of

trips in each mode, according to generalized costs of each of the alternatives.

However, in the last 20 years, it has been a trend on transportation policies to

improve public transportation attractiveness by decreasing the volume of cars

moving on streets and encouraging modal interchange. Hence, park and ride

facilities have emerged in specific locations of urban zones, for facilitating a first

leg of the trip conducted using a personal car, followed by a second leg complet-

ing the trip through a massive and efficient mode of public transport, namely

train, bus, or subway. These trips are performed by a not unique transport

mode known in the literature as combined modes. The incentive for users to

choose these combined modes is associated with the congestion on the streets,
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frequency and fares of transit services, and the location of parking facilities.

User equilibrium involving networks with combined modes is a line of research

with only few major developments. In fact, existing models taking this fact

into account are exactly two: Florian and Los (1979) develop a model that

determines the origin-destination matrices from the origin to the parking lot.

The goal is to predict changes in flow depending on the policies adopted that

could involve implementation of parking lots, such as capacity or parking fares.

Fernández et al. (1994) present some approaches to formulate a user equilib-

rium including combined modes, modeling the choice of transfer nodes through

a nested logit model; this model assumes symmetric cost functions, which re-

duces the range of applications of the model. To address this, Garćıa and Maŕın

(2005) extended the previous model to include asymmetric cost formulations,

using nested logit formulation in two steps: first, describing the mode choice

by the user; and later, the choice of the transfer node. The authors assume a

deterministic user principle governing the route choice in each mode.

The goal of the present paper is to develop an integrated stochastic equi-

librium model considering both traffic and transit networks, to incorporate the

interactions between the two pure modes in terms of travel time and general-

ized costs. In addition, our model adds the combined mode option into the

analysis. The integrated formulation puts together the MTE model developed

by Baillon and Cominetti (2008) for the traffic network, and the STE model

of Cortés et al. (2013) for the transit network. Both models share similarities

in their formulation, as travel decisions are made in both cases at the node

level, avoiding enumeration of routes or strategies. Moreover, both approaches

include the effect of congestion, at vehicular and passenger levels, and both in-

clude stochasticity as a central feature of each model, allowing to incorporate the

different perceptions and uncertainty issues that people have about the features

and conditions of the urban network, to better reflect what really occurs in large

urban centers. To make this proposal realistic and applicable in real modeling

conditions, we also propose an algorithm that performs the resulting stochastic

equilibrium over a generic traffic and transit network, which is tested with real
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data of a large city, using on the transit side a logistic function for the boarding

probability at bus stops, and on the traffic one a Gumbel distribution for the

error term in expected travel times. In this paper, apart from developing the

integration details, we apply the algorithm to a real case scenario corresponding

to a medium size network of the city of Iquique-Chile.

The ultimate purpose of the integrated equilibrium model is to become an

urban planning tool for transportation decision makers. The model has to be

calibrated in a case by case modality, to be able to reproduce the current pas-

sengers and vehicles flows observed on the streets. Then, such tool can become

a powerful prediction model of users behavior when relevant changes in public

transportation or road infrastructure supply are implemented. The paper is or-

ganized as follows, in the next section the foundation of the MTE as well as the

STE models are presented. Next, the integrated formulation is presented, to fol-

low in section 4 with the summary of the solution algorithms, along with many

experiments to show the potential and consistency of the stochastic formulation

under different scenarios. The paper close with a summary, conclusions and

ideas for further work.

2. Preliminaries

2.1. Stochastic transit equilibrium model

The notion of stochastic transit equilibrium is developed by Cortés et al.

(2013), extending the deterministic formulation of Cominetti and Correa (2001)

and Cepeda et al. (2006), based on minimum hyperpath choice.

Consider a directed graph G = (N,A), and denote by ia and ja the tail and

head nodes of an arc a ∈ A. Let A+
i = {a ∈ A : ia = i} and A−i = {a ∈

A : ja = i} be the sets of outgoing and incoming arcs from/to node i ∈ N

respectively. Let d ∈ D ⊆ N be the subset of destination nodes within the

network. For each d ∈ D and every node i 6= d a fixed demand gid ≥ 0 is

given. To keep the model tractable we need to specify arc-destination flows.

The set V := R
|A|×|D|
+ denotes the space of arc-destination flow vectors v with
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nonnegative entries vad ≥ 0, while V0 is the set of feasible flows v ∈ V such

that vad = 0 for all a ∈ A+
d (i.e. no flow with destination d exits from d) and

satisfying the flow conservation constraints:

gid +
∑
a∈A−i

vad =
∑
a∈A+

i

vad ∀i 6= d. (1)

Let va =
∑
d∈D vad be the total flow on link a. Each link a ∈ A+

i is as-

sociated with a line that stops at node i, and is characterized by a continuous

travel time function ta : V → [ 0, t̄a[ , where t̄a is a finite upper bound, and the

effective frequency function fa : V → [0,+∞] which is either identically +∞ or

everywhere finite, in which case, for each d ∈ D we assume that fa → 0 when

va → v̄a with fa(v) strictly decreasing with respect to va when strictly positive.

These functions reflect the congestion of transit lines. In particular, when a

line is completely congested, the observed frequency of that line by a passenger

waiting at that stop is zero.

Consider a passenger traveling to destination d that reaches an intermediate

node i on his or her trip, as shown on Fig. 1.

i do

o

o

ja

τjad

τid

ta(v)

Figure 1: Common lines problem on a general transit network

To exit from i, the passenger can choose one of the arcs a ∈ A+
i to reach the

next node ja. Call τid the expected total travel time from node i to destination

d. In the common-line problem, the passenger compares the times ta(v)+τjad to
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choose the arcs to follow. In the stochastic common-line problem, each passenger

has probability pda of wishing to board a bus of line a to reach destination d,

given that a bus of line a is at the bus stop:

pda = P(boarding a bus to reach destination d|bus of line a is at the stop).

A passenger that wishes to travel from i to d compares the expected travel

time of boarding the current bus, ta(v) + τjad, with the expected travel time of

waiting for the next bus, τid. This probability is given by a stochastic model

and depends on the expected travel time. We will assume that pda is a strictly

decreasing continuous function of the difference between expected travel time

on the current bus ta(v) + τjad and expected travel time of waiting τid, ϕa :

R→ ] 0, 1[ :

pda ≡ ϕa(ta(v) + τjad − τid) . (2)

We introduce these functions merely as tools that are used to model the stochas-

tic decision of boarding and are to be determined by the modeler.

Cortés et al. (2013) assume that the arrival process is completely renewed

each time a bus arrive to a certain stop, and that the arrival of buses follow a

Poisson distribution. These assumptions allow us to calculate expected travel

time and flow assignment (respectively) as in equations (4) and (5) below.

The stochastic transit equilibrium is formulated as a set of simultaneous

stochastic common-lines problems (one for each id pair), coupled by flow con-

servation constraints (Cortés et al., 2013). We define for each v ∈ V the flow

entering node i with destination d by:

xid(v) := gid +
∑
a∈A−i

vad. (3)

Definition 1. A pair of feasible flow vector and expected travel times (v∗, τ∗) ∈

V0 × R|N |×|D|+ is a Stochastic Transit Equilibrium if for all d ∈ D and i ∈ N ,
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with i 6= d we have:

τ∗id =
1 +

∑
a∈A+

i
pdafa(v∗)

(
ta(v∗) + τ∗jad

)
∑
a∈A+

i
fa(v∗) pda

; (4)

v∗ad = xid(v
∗)

fa(v∗) pda∑
a∈A+

i
fa(v∗) pda

, ∀a ∈ A+
i ; (5)

pda = ϕa(ta(v) + τjad − τid) , ∀a ∈ A+
i .

2.2. Markovian traffic equilibrium model

The basis of Markovian equilibrium model (MTE) in traffic networks of

Baillon and Cominetti (2008) is that car users travel to their destinations by

a sequential arc selection process based on a discrete choice model at every

intermediate node i that they reach on their trip.

Let the random variable t̃a = ta + νa be the travel time on arc a ∈ A+
i ,

where ta is the deterministic travel time on that arc, and νa an error term,

which represents variability between drivers perceptions. It is assumed that

these terms have a continuous distribution, where E(νa) = 0. Then, the optimal

travel time between all available paths r ∈ Rid from i to d is given by:

τ̃id = min
r∈Rid

{∑
a∈r

t̃a

}
.

Given a destination d, a driver arrives at node i and compares the travel

time or generalized costs using each of the outgoing arcs of the node i. Let z̃ad

the stochastic time or cost to destination d using the arc a, which is:

z̃ad = t̃a + τ̃jad = zad + εad (6)

where zad = E(z̃ad) and E(εd) = 0. The driver selects the arc having the

shortest time between the set a ∈ A+
i , according to their own perception. This

process is repeated at each intermediate node during the trip. Then, for each

destination d ∈ D, there is an underlying Markov chain in the network, where

for a node i 6= d, the transition probabilities are given by:

pda =

P(z̃ad ≤ z̃a′d,∀a′ ∈ A+
ia

) if a = (ia, ja) ∈ A+
ia

0 if not
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while the destination node is an absorbing state of the chain, i.e. pd(d,d) = 1.

The probability of using the arc a from node i to reach destination d can be

expressed as:

P(z̃ad ≤ z̃a′d ∀a′ ∈ A+
i ) =

∂ϕid
∂zad

(zd) (7)

where, for each pair id, ϕid : R|A
+
i | → R is the expected travel time function:

ϕid(zd) ≡ E

(
min
a∈A+

i

{zad + εad}

)
. (8)

The functions ϕid, which are component-wise non-decreasing, concave and

smooth, are determined by the random variables εd, and in turn, by the variables

νa. The functions that belong to this class, denoted by E , and where ϕdd ≡ 0,

admit an analytical characterization, as will be seen later on this section.

With these elements, it is possible to describe the Bellman’s dynamic pro-

gramming equations as τ̃id = mina∈A+
i
z̃ad. Taking expectation at both sides of

the equation, we have: zad = ta + τjad

τid = ϕid(zd)

which may be expressed only in terms of τid variables:

τid = ϕid

(
(ta + τjad)a∈A+

i

)
. (9)

Furthermore, using the same notation as in the STE model, we have the

same flow conservation constraints at each node as in Equation (1). Hence, the

flow distribution can be written as:vad = xid · pda

xid = gid +
∑
a∈A−i

vad

. (10)

Given a family of functions ϕid ∈ E (one for each id ∈ N × D pair) with

ϕdd ≡ 0, and, for each a ∈ A a strictly increasing continuous travel time function

sa : R→ (0,∞), the MTE model is formalized as follows:

Definition 2. A vector v ∈ R|A| is a Markovian traffic equilibrium iff va =∑
d∈D vad where the vad’s satisfy the flow distribution equation (10) with τid’s

solving (9) for ta = sa(va).
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Baillon and Cominetti (2008) used for large networks tests a BPR-type for-

mulation for travel times functions sa(va) in order to include the vehicles con-

gestion effect and a logit formulation family for ϕid(·), of parameters βid. The

latter leads to:

τid = − 1

βid
ln

∑
a∈A+

i

e−βid(ta+τjad)

 , (11)

pda =
e−βid(ta+τjad)∑

a′∈A+
ia

e−βid(τa′+τja′d
)
. (12)

An important issue of MTE is to ensure existence in the model, requiring

that drivers reach their destinations in a finite time. That is, within the model,

expected travel times can not be negative, because that would imply that certain

vehicle flows were kept captive within certain cycles. Therefore, Cominetti et al.

(2012) indicate that we can avoid the latter if the travel time vector t belongs

to the set:

C =
{
t ∈ R|A| : ∃τ̂ with τ̂id < ϕid

(
(ta + τ̂jad)a∈A+

i

)
∀i 6= d

}
.

Furthermore, they also indicate that since the functions ϕid(·) are continu-

ous, concave and component-wise non-decreasing, for each t ∈ C, we have t′ ∈ C

for any t′ > t. Therefore, if the free-flow travel time vector t0 ∈ C, we have

existence of equilibrium.

Since the vector t are commonly defined by road design and existing urban

conditions, holding t ∈ C actually means defining correctly the functions ϕid(·),

which, in the particular case where these functions are logit-based, specifically

means using a bounded set of βid parameters in order to fulfill the condition.

These parameters have a key role in the model: they represent the inverse

variance value of travel time by choosing a certain arc zad whose error term has

a Gumbel distribution.
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3. Integrated stochastic equilibrium model

3.1. Integrated equilibrium model with pure modes choice

In this section we develop a joint equilibrium model for both modes, consid-

ering the STE model for transit equilibrium, and the MTE model for traffic equi-

librium. Both formulations interact at the demand levels associated with each

origin-destination pair and the corresponding travel times, as both modes use

the same road infrastructure. Conceptually, the integrated equilibrium model

relies on the following premise: some users of the network perform a modal

choice at their origin nodes, before starting their trips. These users, who has

both modes available, decide whether to use the car or the bus, staying on the

traffic network or being transferred to the transit network. In turn, users who

have only the bus as the available option, are captive users of the bus and move

only through the transit network.

The modal choice for users with car and bus availability is conducted by

means of a logit function, which takes into account the generalized costs of

traveling in both networks, function denoted Umid for origin i and destination

d by mode m, with m ∈ {B,C} representing bus and car respectively. The

generalized cost or utility function may contain expected travel times τmid of the

respective network, the monetary costs of using each mode -fares, fuel prices,

etc.- and other issues involving modal choice, such as comfort, modal attrac-

tiveness or traffic congestion.

Let GBid be the variable denoting the number of users who only have the

bus available to travel between the OD pair id, and let GCid be the variable

denoting the number of users that can freely choose between the car or the bus

to perform the trip on that OD pair. Then, on equilibrium, the input demand

on both transit and traffic networks are respectively:

gB∗id = GBid +GCid ·
eU

B∗
id

eU
B∗
id + eU

C∗
id

(13)

gC∗id = GCid −GCid ·
eU

B∗
id

eU
B∗
id + eU

C∗
id

. (14)
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Note that expression GCid · eU
B∗
id

eU
B∗
id +eU

C∗
id

represents the total number of users that

observe travel costs in both modes, but prefer to use the bus, making a trans-

ference from the traffic to the transit network. Graphically, the modal split

process is shown in Fig. 2.

i d MTE Network

STE Network

gC∗id

gB∗id

Figure 2: Modal split on traffic and transit networks with pure modes

3.2. Integrated equilibrium model with combined modes choice

The natural extension of the previous model is the addition of the com-

bined option of traveling through both networks during the realization of an

OD trip. On our proposal, we consider that a traveller with car and bus avail-

ability may choose to drive in the first part of the trip, then to park the car

at an intermediate transfer station, and from there, to complete the trip by

public transportation towards the final destination. This modality of travel is

known as park and ride, with the adequate facilities for parking, system that

successfully operate in many cities over the world (e.g. Boston, New Jersey, Ox-

ford, Montreal, Norwich, Bristol). Normally, the transfer stations are located

on the suburbs of the city, places that should have good connectivity to the

public transportation network, thus improving the use of transit systems within

the city and consequently reducing the number of private cars within congested

urban zones.

In this case, we decide to use a hierarchical logit formulation to represent

the modal choice process with combined modes (Garćıa and Maŕın, 2005); the

decision levels are two: first, at the upper level the decision is performed by

choosing the mode, which can be either car only, bus only, or car and bus as

a combined mode. If the traveller chooses the combined option, then there is

14



a second (lower) level decision, for which the user must choose the location

of the transfer node between car and bus, among a predefined set of options.

The reason for having two decision levels (and therefore, not just analyzing

at the same level all possible options between modes and transfer stations), is

because there is a strong correlation between the combined mode options, thus

the assumption underlying the independent alternatives behind the multinomial

logit model does not apply in this case.

Let us denote mode m ∈ {B,C, P} for bus, car and combined mode respec-

tively, and let KP ⊂ D be the set of transfer nodes within the transportation

network, allowable to combine between car and bus. Then, we denote by gPid,k

the total number of users who travel between the origin i and destination d

using the combined mode P , and choosing transfer node k ∈ KP . Graphically,

the demand split for those travelers with both pure modes available is shown in

Fig. 3, where each level represents a decision that must be made by the traveller.

GCid

gC∗idgB∗id gP∗id

...gP∗id,1 gP∗id,k

Figure 3: Decision tree of modal and transfer node choice for users with car

and bus availability

In the same way we did for the integrated model with pure modes, in this

combined formulation there is a primary mode choice, considering the gener-

alized costs of each option. Let γmid be the probability of choosing mode m to

travel between the OD pair id. Hence,

γmid =
eU

m∗
id∑

m′∈{B,C,P} e
Um′∗

id

. (15)
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Generalized costs in the case of pure car or bus modes could become the same

formulation used in the integrated equilibrium model just with pure modes.

However, for the combined mode, we have to estimate an expected minimum

generalized cost function considering all transfer nodes. Let UPid,k be the gener-

alized cost of using the combined mode between the pair id using transfer node

k. This function could depend, in addition to the expected travel times in both

car and bus segments of the trip, also on other aspects such as parking safety,

comfort, accessibility, parking fare, etc. Then, an estimate of the minimum gen-

eralized cost among all transfer nodes, which finally is the representative cost

of choosing the combined mode at the upper level of the decision tree, can be

found using a log-sum formulation:

UP∗id =
1

βP
ln

∑
k∈Kp

eβP ·UP∗
id,k

 , (16)

where parameter βP indicates the degree of correlation among different parking

alternatives to choose from in a hierarchical logit scheme.

Given that a traveler has chosen the combined mode, the conditional prob-

ability of choosing k as transfer node can be computed as:

γPid,k =
eβP ·UP∗

id,k∑
k′∈KP

e
βP ·UP∗

id,k′
. (17)

Finally, the demand between the pair id on traffic and transit networks are

respectively:

gB∗id = GBid + γBid ·GCid (18)

gC∗id = γCid ·GCid (19)

and the total number of travelers who choose the combined mode between the

id pair, transferring at the k transfer node is:

gP∗id,k = γPid,k · γPid ·GCid︸ ︷︷ ︸
gP∗id

. (20)

Graphically, the modal split for traffic and transit networks in the integrated

equilibrium model with combined modes is shown in Fig. 4.
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Figure 4: Modal split on traffic and transit networks with combined modes

4. Implementation and results

In this section, an efficient algorithm is proposed for solving the integrated

equilibrium model; the procedure is based on the Method of Successive Aver-

ages (MSA). The model is iterative. At the beginning of each iteration, apart

from computing travel times and effective frequencies in both networks, de-

mand levels are obtained by calculating respective utility functions for each

mode,considering the levels of service obtained in the previous iteration as in-

puts for the next. The algorithm is designed to reach the equilibrium for STE

and MTE models separately, which computationally can be solved in parallel

and not necessarily through a sequential execution. The algorithm compares

the resulting vector of flows with respect to those flows obtained in the previous

iteration until reaching a predefined convergence criteria based on similarity of

the flows.

Before discussing the integrated equilibrium model algorithm, in the follow-

ing section we describe a required auxiliary construction procedure for adding

walking, boarding and alighting explicitly in the transit network, representation

that is necessary for implementing the STE module.

4.1. STE Implementation

4.1.1. Extended transit network

The STE model contains cross dependencies between expected travel time

τid, the conditional probability of boarding a certain bus pda, effective frequencies

fa, travel time ta and destination flows vad. Due to such dependences, it turns
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out that the STE implementation becomes in essence the solution of a fixed point

problem among these values, which are interrelated in Definition 1 and Eq. (1)

of flow conservation at each node. In order to track resulting destination flows

within the transit network as well as to verify flow conservation constraints,

we describe with much detail the operation of passengers when boarding or

alighting from(to) a bus. In order to describe these processes, we have to add

auxiliary nodes and arcs to the original network. This resulting network is called

extended transit network.

The transit network is represented by three types of nodes: centroids, stop

nodes and line nodes. Centroids d ∈ D represent urban areas where demand

is generated and attracted; stops nodes s ∈ NS represents the locations where

passengers are allowed to board and alight. Finally, for every line l stopping

at node s, we add an additional line node hls ∈ NL that represent the transit

lines available at each stop node. The entire set of extended network nodes is

denoted by N = D ∪NS ∪NL.

For connecting these different types of nodes, we use three different classes

of arcs: walking arcs, boarding/alighting arcs and service arcs. Walking arcs

(d, s) and (s, d) represent the walking distance between each centroid d and

each bus stop s. We include these arcs only for zones and bus stops that are

geographically close. The frequencies of such arcs are fixed as fa =∞ as these

arcs are always available once the passenger decided to go to a certain stop, and

have no waiting time associated. The travel time on these arcs is equal to the

walking time between the zone and the stop.

The second set of arcs are boarding arcs (s, hls) and alighting arcs (hls, s)

for each line l stopping at s ∈ NS . In boarding arcs, the frequency is equal

to the effective frequency fa that the line has on that stop, while travel time

ta in these arcs is assumed negligible and equal to zero, although the model

is flexible enough to set these variables in a greater than zero value, including

passengers transfer time at stops. Alighting arcs travel time are set as ta = 0

as well, but frequencies are fixed to fa = ∞, as a passenger does not have

to wait for alighting the bus, once it stopped. Finally, the third set of arcs
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represent the on board travel time on each transit line segment. For there,

arcs (hls, h
l
s′) are included for each transit segment of line l connecting nodes s

and s′, with travel times corresponding to those computed between consecutive

stops on the original network, and setting frequency as fa = ∞. Graphically,

the representation of a stop in the STE model is shown in Fig. 5.

hls′′ hls hls′

sd

Line node

Stop nodecentroid

On board

fa = ∞, ta > 0

On board

Alighting

fa = ∞

ta = 0

Boarding

fa < ∞

ta = 0

Walking

fa = ∞, ta > 0

fa = ∞, ta > 0

Figure 5: Stop representation on STE extended network

Note that in case of line nodes, all outgoing arcs from those nodes -alighting

and on board arcs- have infinite frequency in our representation; the same prop-

erty applies to walking arcs associated with centroids. In these cases, the effec-

tive frequencies values contained in Definition 1 are replaced by the value f∞,

where the limit of those equations as f∞ approaches infinity, i.e., for all a ∈ A+
i

and fa(v∗)→∞ we compute expressions of Def. 1 as:

τ∗id = lim
f∞→∞

1 +
∑
a∈A+

i
pdaf∞

(
ta(v∗) + τ∗jad

)
∑
a∈A+

i
f∞pda

=

∑
a∈A+

i
pda

(
ta(v∗) + τ∗jad

)
∑
a∈A+

i
pda

,

(21)

v∗ad = lim
f∞→∞

xid(v
∗)

f∞p
d
a∑

a∈A+
i
f∞pda

= xid(v
∗)

pda∑
a∈A+

i
pda
, (22)

pda = ϕa
(
ta(v∗) + τ∗jad − τ

∗
id

)
. (23)

Moreover, stop nodes combine finite and infinite frequencies on their outgo-

ing arcs. In order to use the equations in the Definition 1, we state the following
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consideration in the algorithm: when computing the equilibrium for destination

d, we remove all boarding arcs from stop nodes adjacent to d, since it is as-

sumed that passengers are rational and they will not ride another bus: these

passenger will walk towards the destination instead. Conversely, if none of the

centroids adjacent to the stop is the destination d, then walking arcs outgoing

from this node are not considered, forcing passengers to boarding another bus

for reaching their destinations. Graphically, these modifications are shown in

Fig. 6, in which dashed arcs are not considered at each case. Note that after

these modification, for each node all incoming/outgoing arcs have either infinite

or finite frequency, allowing to compute travel times and induced flows. We

denote by A the resulting set of arcs on the extended network.

d

Centroid

xid

Adjacent centroid is destination d

Stop

Line node

fa = ∞

fa = ∞

fa < ∞

fa = ∞
k

Centroid

xid

Adjacent centroid is not destination d

Stop

Line node

fa = ∞

fa = ∞

fa < ∞

fa = ∞

Figure 6: STE network modifications for Stop nodes when computing the

equilibrium for destination d

4.1.2. Computing Expected Travel Time

Expected travel times τBid are obtained by solving a system of linear equa-

tions. At each node i ∈ N of the extended network, and for each destination

d ∈ D, we have the expression for τid of Definition 1 or Eqs. (21-22), depending

on the type of node. In the case where i is a stop node and the destination d is

not adjacent to i, by rearranging terms of the Def. 1, we obtain:
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∑
i∈A+

i

fa(v)pda(τBid − τBjad) = 1 +
∑
i∈A+

i

fa(v)pdata(v), ∀i ∈ NS with (i, d) /∈ A.

(24)

If i is a line, centroid or stop node adjacent to destination d, then for all

outgoing arcs of i it holds that fa(v) → ∞, and redefinition for τid of Eq. (21)

applies. Rearranging terms of the latter:

∑
i∈A+

i

pda(τBid − τBjad) =
∑
i∈A+

i

pdata(v), ∀i ∈ D,NL and ∀i ∈ NS with (i, d) ∈ A.

(25)

As we can see, Equations (24) and (25) form a sparse system of linear equa-

tions of size |N |×|N |, that can be efficiently solved even for large scale networks,

obtaining the values τBid for a given flow vector v.

4.2. Integrated equilibrium algorithm

Since the integrated equilibrium model with pure modes is a particular in-

stance of the more general model with combined modes, the implementation of

an algorithm to solve the equilibrium in a multimodal network will be based

on the latter. The structure used to implement the algorithm is the following:

we use an iterative MSA-based algorithm, where at first, expected travel time

matrices in each network are computed; then, the levels of demand on each net-

work through a modal split model is determined; and finally, with the obtained

demands, we solve equilibrium sub-models in each mode. A stop criteria based

on similarity of flows vector is proposed.

The general integrated equilibrium algorithm is described in Algorithm 1.

STE and MTE modules are described step by step in Algorithms 2 and 3 re-

spectively. Note that for the integrated equilibrium model with pure modes

implementation, defining transfer nodes subset as KP = ∅ is enough.

Sometimes, the MSA convergence is not monotonic. This occurs because the

descent direction may point in a direction such that the norm in some iterations
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Algorithm 1 Integrated equilibrium model with combined modes

1: Set initial feasible assignment vC,0 y vB,0 in both networks

2: Set n← 0.

3: repeat

4: Set n← n+ 1.

5: Modal split model: gB,nid , gC,nid , gP,nid,k

6: Compute effective frequencies fna = fa(vB,n−1).

7: Compute travel time tna = ta(vn−1).

8: Solving transit equilibrium by STE (see Alg. 2)

9: Solving traffic equilibrium by MTE (see Alg. 3)

10: until

√∑
a(v̄B,n+1

a −v̄B,n
a )2∑

a v̄
B,n
a

≤ ε and

√∑
a(v̄C,n+1

a −v̄C,n
a )2∑

a v̄
C,n
a

≤ ε.

increases; it could also happens because the MSA step, given by the value

αn, is fixed a priori, and that may exceed the optimal descent weight (Sheffi,

1985). A convergence criteria which is in general monotonically decreasing can

be obtained by averaging the flows over the past q iterations. In this case, if v̄na

denotes the average flow in the iteration n:

v̄na =
1

q

(
vna + vn−1

a + ...+ vn−q+1
a

)
(26)

then, the convergence criteria may be based on flows similarity for the last q

iterations. For example: √∑
a(v̄n+1

a − v̄na )2∑
a v̄

n
a

≤ ε. (27)

The latter is the convergence criteria implemented in Algorithm 1.

4.3. Numerical Experiments

In this section, we analyze some numerical experiments by observing the

behavior of the integrated equilibrium model. First, the pure modes algorithm

is implemented in a simple network, focusing on transit equilibrium and com-

paring the results among the stochastic model (Cortés et al., 2013) and the
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Algorithm 2 STE module for integrated equilibrium model

1: for all destination d ∈ D do

2: Set l← 0.

3: Compute initial conditional probabilities pd,0a = ϕdi (t
n
a + τB,njad

− τB,nid ).

4: repeat

5: Set l← l + 1.

6: Solve system of linear equations for expected travel time

τB,lid =
1 +

∑
a∈A+

i
fna p

d,l−1
a · (tna + τB,ljad

)∑
a∈A+

i
fna p

d,l−1
a

∀i ∈ NS with (i, d) /∈ A

or,

τB,lid =

∑
a∈A+

i
pd,l−1
a · (tna + τB,ljad

)∑
a∈A+

i
pd,l−1
a

∀i ∈ D,NL and ∀i ∈ NS with (i, d) ∈ A

7: Compute conditional probabilities pd,la = ϕdi (t
n
a + τB,ljad

− τB,lid ).

8: until
||τB,l

id −τ
B,l−1
id ||

||τB,l
id ||

< ε.

9: Set pd,na = pd,la

10: Compute induced flows

v̂ad = xBid
fna p

d,n
a∑

a∈A+
i
fna p

d,n
a

∀i ∈ NS with (i, d) /∈ A

or,

v̂ad = xBid
pd,na∑

a∈A+
i
pd,na

∀i ∈ D,NL and ∀i ∈ NS with (i, d) ∈ A

11: end for

12: Update transit flow assignment vB,n = (1− αn)vB,n−1 + αnv̂.

deterministic version (Cominetti and Correa, 2001; Cepeda et al., 2006). Then,

the integrated equilibrium model with the combined modes algorithm is tested

on a real transportation network: the city of Iquique, Chile.
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Algorithm 3 MTE module for integrated equilibrium model

1: for all destination d ∈ D do

2: Set l← 0.

3: Set z0
ad = tna

4: Set τC,0id = 0

5: repeat

6: Set l← l + 1.

7: Compute expected travel time τC,lid = ϕid(z
l−1
ad )

8: Compute expected travel time by arcs zlad = tC,na + τC,ljad
.

9: until
||τC,l

id −τ
C,l−1
id ||

||τC,l
id ||

< ε.

10: Compute probabilities

pd,na =
∂ϕid(z

l
ad)

∂zlad

11: Compute induced flow

v̂ad = xCid
pd,na∑

a∈A+
i
pd,na

∀i ∈ D,NS

12: end for

13: Update traffic flow assignment vC,n = (1− αn)vC,n−1 + αnv̂.

4.3.1. Stochasticity in STE Model

The Sioux Falls city coding provided by Bar-Gera (2011) was used to analyze

the stochasticity effect on the transit network. This original layout corresponds

to a traffic network, although we use the same configurations for coding the

transit mode, similar to the behavior of an urban subway system.

The Sioux Falls network has 24 nodes, each generating and attracting de-

mand. Therefore, each node is a centroid and a stop node simultaneously. There

are 360,000 total trips generated per hour in the system. For testing purposes,

we designed 4 subway lines around the city as shown in Fig. 7. Each line l has

a nominal frequency of µl = 30 trains/hr and capacity of cl = 1, 500 pax/train.

The conditional probability function used for this experiment is a logistic dis-
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tribution as follows:

pda ≡ ϕda(·) =
1

1 + eθ(ta+τjad−τid)
, ∀a ∈ A;∀d ∈ D; θ ∈ R+. (28)

1 2

3 4 5 6

9 8 7

12 11 10 16 18

17

14 15 19

23 22

13 24 21 20

Figure 7: Transit lines design in Sioux Falls

We tested a set of instances for the Sioux Falls network, where the only

difference is the parameter θ of the conditional probability pda. Hence, we obtain

different stochasticity levels in users decision making process between instances.

The formulation of effective frequency is the same as used in Cepeda et al.

(2006), with exponent β = 5.0. The convergence criteria is set at ε = 10−9 and

the MSA parameter selected for updating the flow is αn = 1
n , where n is the

number of the current iteration in the general algorithm. The STE equilibrium

is reached after around 250 iterations for each instance.

For the analysis of results obtained with the STE model, it is possible to make

comparisons between the deterministic and stochastic instances if we define ad-
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equate dispersion indicators in equilibrium flows over the network. In principle,

in deterministic instances, users choose the minimum hyperpath, causing that

the arcs or segments contained in this strategy have flows v∗ad > 0, while in those

arcs that belong to suboptimal hyperpaths, v∗ad = 0. Then, we define the level of

network usage, denoted ψBd , as the ratio between the number of line segments

used in the network to reach the destination d, and the total number of line

segments available in the network; while ψ̄B is the average of level of network

usage over all destinations. A used segment is such that v∗ad > 0 . However,

as the STE algorithm is a numerical implementation, we consider that a used

segment is such that v∗ad > ξ ≈ 0. In the case of Sioux Falls, ξ = 0.5[pax/hr].

A second interesting indicator in order to analyze flow dispersion in stochas-

tic instances for STE model is the relative difference Dd between the flow vector

in equilibrium obtained in any stochastic instance with respect to the determin-

istic case, for destination d. This indicator is calculated as follows:

Dd =
‖~vdetd − ~vinsd ‖
‖~vdetd ‖

, (29)

where ~vdetd is the destination-flow vector resulting in the deterministic case, and

~vinsd is the resulting equilibrium destination-flow vector for any other instance.

Moreover, it is also possible to apply this indicator on the total flow vector, in

order to observe general changes in the network:

D̄ =
‖~vdet − ~vins‖
‖~vdet‖

. (30)

The deterministic instance in the transit equilibrium for Sioux Falls is ob-

tained by setting θ = 30. The results for different instances, along with the

above indicators, are shown in Table 1. In addition, as a measure of the in-

fluence of stochasticity on other variables in the model, we include the value

of the equilibrium expected time τB∗1,10 from node 1 to node 10, which increases

gradually while increasing STE model stochasticity. This result is expected,

as stochasticity increases, users integrate other suboptimal strategies for travel

between this OD pair and have travel times larger than the minimum obtained

for the deterministic case. Therefore, the expected time collects this effect,
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increasing its value.

We also want to test the null hypothesis that the pairwise difference between

the flows in any instance and the deterministic equilibrium has a mean equal

to zero (paired-sample t-Test), at the default 5% significance level. Results of

applying the test to destination 10 as well as to all destinations are reported in

two columns (p-value) of table 1.

Table 1: STE results & indicators for Sioux Falls network

θ ψ̄B τB∗1,10[min] D10 p-value D̄ p-value

30.0 0.44 28.73 0.00 – 0.00 –

15.0 0.44 28.73 0.00 0.709 0.00 0.761

8.0 0.46 28.74 0.01 0.706 0.00 0.758

4.0 0.49 28.82 0.01 0.594 0.01 0.538

2.0 0.65 29.22 0.03 0.621 0.05 0.476

1.0 0.93 30.14 0.06 0.526 0.09 0.221

0.5 0.96 32.20 0.11 0.025 0.14 < 0.001

0.3 0.96 35.67 0.21 < 0.001 0.29 < 0.001

0.2 0.96 40.77 0.32 < 0.001 0.51 < 0.001

Another conclusion from these results is that the reduction of the θ parame-

ter causes the increase in the average level of network usage for all destinations

ψ̄B and a raise of the dispersion of equilibrium flows. This second effect is cap-

tured by the increase of the relative difference D̄ and can be observed as well

at destination-flows level, as shown by the increase of indicator D10. In the last

instance, the dispersion flow is so high that, on average, nearly all of transit

segments of the network are used by a flow-destination volume greater than ξ.

The results of the paired-sample t-test are consistent with the analysis of the

other indicators, showing that the flows patterns are statistically different for

values of θ below one.

Graphically, the level of network usage for destination d = 10 between de-

terministic and a highly stochastic instances is shown in Figs. 8 and 9.
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Figure 8: Transit segments used at

STE deterministic instance in Sioux

Falls. θ = 30 and ψB10 = 0.46

1 2

3 4 5 6

9 8 7

12 11 10 16 18

17

14 15 19

23 22

13 24 21 20

Figure 9: Transit segments used at

STE stochastic instance in Sioux Falls.

θ = 0.5 and ψB10 = 0.91

Another interesting comparison to perform is between the deterministic and

stochastic instances associated with the STE model with variation in demand

levels. Cortés et al. (2013) show that on a very small 3-nodes network, when the

demand generates low flow levels on line segments under equilibrium conditions,

the flows difference between the stochastic instance and the deterministic one

is highly relevant. However, for high levels of demand, there are no relevant

changes in equilibrium flows between both instances. In this section, we perform

the same comparison but on the Sioux Falls network, for different levels of

demand. The demand variation is obtained by applying a set of amplifying

factors for all OD pairs.

The results are shown in Fig. 10, for different levels of transit demand and
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Figure 10: Relative difference D̄ with variation of demand and stochasticity in

STE instances for Sioux Falls

stochasticity. We can observe the following tendency: when demand increases

progressively, the index associated with the relative difference D̄ of the equilib-

rium flow vector between the deterministic and stochastic instances decreases.

This concur with the results of Cortés et al. (2013), in a more realistic medium-

sized network.

Intuitively, in highly congested networks, users waiting for a bus at a stop

see no differences in effective frequencies between lines, because all of them are

congested, and all of these values are close to zero. Hence, the flow vector differ-

ences between the deterministic and stochastic instances become less relevant,

since the operation of the networks are more similar.

4.3.2. Integrated Equilibrium Model with Pure Modes

In the experiment, we analyze the integrated equilibrium model including

pure modes only; a private car transport network of Sioux Falls city is used

(Bar-Gera, 2011), containing 24 centroids, and 76 unidirectional arcs, and to-

tal demand of 360,000 trips/hr. Moreover, the public transport network and

simulation parameters are identical to those used in testing the STE algorithm,
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described in section 4.3.1.

The goal of this experiment is to measure the impact of the stochasticity in

both the MTE and the STE models. For accomplishing that, a logistic formu-

lation is used in the transit model for the conditional proba bility pa (Eq. 28),

varying the parameter θ. In the case of private cars, a log-sum formulation

was chosen for computing the expected minimum travel time τCid , in which case

the parameter β is varied to get different levels of stochasticity. Notice that

the modal utility functions are based only on expected travel times for each

network, i.e.: UCid = −τCid and UBid = −τBid .

The general results obtained by the integrated equilibrium model algorithm

with pure modes for the Sioux Falls network are shown on Tables 2 and 3.

The results summarize modal split for users with car and bus availability, and

network usage indicators.

Table 2: Integrated equilibrium model with pure modes results for Sioux Falls

network, STE stochasticity

θ STE β MTE Car

Share

Bus

Share

ψ̄B ψ̄C

30.0 12.0 67.8% 32.2% 0.43 0.48

15.0 12.0 67.8% 32.2% 0.44 0.48

8.0 12.0 67.8% 32.2% 0.44 0.48

4.0 12.0 67.8% 32.2% 0.46 0.48

2.0 12.0 68.2% 31.8% 0.49 0.48

1.0 12.0 69.4% 30.6% 0.65 0.49

0.5 12.0 72.3% 27.7% 0.93 0.49

0.3 12.0 76.9% 23.1% 0.96 0.50

0.2 12.0 81.7% 18.3% 0.96 0.52

As seen in Table 2 increasing stochasticity in the STE model, and keeping a

deterministic formulation in the MTE model, causes that users tend to choose

the car in higher proportion, because the expected travel time computation in
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Table 3: Integrated equilibrium model with pure modes results for Sioux Falls

network, MTE stochasticity

θ STE β MTE Car

Share

Bus

Share

ψ̄B ψ̄C

30.0 12.0 67.8% 32.2% 0.43 0.48

30.0 6.0 67.9% 32.1% 0.43 0.49

30.0 3.0 68.0% 32.0% 0.43 0.49

30.0 1.5 68.0% 32.0% 0.43 0.57

30.0 1.0 67.8% 32.2% 0.43 0.69

30.0 0.5 66.6% 33.4% 0.44 0.98

30.0 0.4 65.8% 34.2% 0.44 1.00

30.0 0.35 64.9% 35.1% 0.44 1.00

STE model integrates suboptimal strategies, increasing these values. Hence,

users who have modal choice availability tend to choose the mode that is more

predictable in relation to travel times. Furthermore, the same results indicate

that the network usage in the STE model, strongly increases as the stochasticity

increases, from 0.43 in the deterministic instance to 0.96 in the fully stochastic

instance.

A similar analysis can be performed by observing results in Table 3 when

increasing stochasticity in the MTE model and a deterministic formulation re-

maining in STE. In this case, increasing the stochasticity of the MTE causes a

higher proportion of users choosing public transport, due to less variability in

expected travel times, however changes in modal split are lower compared to

the previous case. On the other hand, stochasticity in the MTE model increases

the use of arcs in the private transport network so that, on average, the flow for

a given destination is dispersed through all available arcs.
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4.3.3. Integrated Equilibrium Model in Large Networks

The test scenario to be studied, in the context of our integrated equilibrium

model including the option of combining modes, is a real network representation

of the city of Iquique in the north of Chile. The real transit network contains

72 centroids, 485 bus stops and 2,118 unidirectional transit line segments. The

network belongs to a weekday morning peak period, calibrated for the year

1998, with a total of 5,449 trips/hr during such a period. The size of the STE

extended network for this city is 2,711 nodes -including centroids, stops and

line nodes-, and 7,144 arcs -including walking, boarding, alighting and on board

arcs-.

On the other hand, the traffic network includes 72 centroids, 485 intersection

nodes and 2,180 unidirectional road arcs, which are identical to those contained

in the transit network, using the same road infrastructure, for a total of 10,646

trips/hr.

The integrated equilibrium model requires to define modal utility functions

and parameters, in order to obtain the modal split of those users that have

car, bus and combined mode availability. The network coding, modal utility

functions and some calibrated parameters for the modal split model in Iquique

were provided by the Ministry of Transport and Telecommunications of the

Chilean Government. We will use the following utility function UCid, representing

the disutility of passengers for a user traveling from i to d using car:

UCid = θC + θtgen · τCid + θcost ·
τCidcunit

I
(31)

where:

θC car modal constant [utility]

θtgen generalized time parameter [utility/min]

θcost monetary cost parameter [utility/$]

cunit car use monetary cost per unit time [$/min]

I income level [$]
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In addition, the utility function for passengers using bus is:

UBid = θB + θtgen · τBid + θcost ·
cbus
I

(32)

where:

θB bus modal constant [utility]

cbus bus fare [$]

The remaining parameters for the bus utility function are the same as defined

in the case of the car on Eq. (31), and for simulation scenario performance, most

of all parameters for Iquique, showed in Table 4 were previously calibrated.

Table 4: Modal utility parameters for Iquique, year 1998

Parameter
Mode

Car Bus Combined

θm 0.502 0.278 -1.500 1

θtgen -0.023 -0.023 -0.023

θcost -43.800 -43.800 -43.800

The combined mode representative utility UPid using a log-sum formulation

of Eq. (16) is required. First, we need to compute the value of the utility

corresponding to the combined mode, where the interchange between car and

bus occurs at parking facility k ∈ KP , UPid,k. For this, we assume that this

utility has a functional cost and time structure similar to the sum of utilities

of choosing each mode in their respective section of the trip, adding a constant

θP that represents the modal interchange disutility at the parking lot, which

reflects other conditions not included as variables in our model, such as comfort,

security, accessibility, infrastructure, etc. In the case of Iquique, this constant

was not previously calibrated, so that a consistent value is assumed to perform

1Not a calibrated parameter. Defined for simulation purposes
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the simulation scenario. Moreover, we will add to the combined mode utility

the fare of parking a car cpark, as well as the queuing time caused by the

other vehicles, when entering the parking lot. The latter term, denoted by

T kwp, is computed as follows: consider that the parking entrance is a queue

of type M/M/r, where arrivals and service in the parking are assumed to be

Markovian, with arrival rates λk, together with r available servers, each of them

with a service rate µk. Then, the average waiting time in a queue with these

characteristics can be approximated by (Larson and Odoni, 1981):

T kwp ≈
λk

(rkµk)2

1− λk

rkµk

+
1

µk
. (33)

Equation (33) has an implicit capacity constraint, since it is only valid when

λk

rkµk
< 1. In the algorithm implementation, the arrival rate to the parking lot

is equal to the sum of all incoming flows to the centroid that represents the

parking, i.e λk =
∑
a∈A−k

va. Thus, the utility of choosing the combined mode

using the parking lot k as modal interchange location is as follows:

UPid,k = θP + θtgen · (τCik + T kwp + τBkd) + θcost ·
(τCikcunit + ckpark + cbus)

I
. (34)

The equilibria achieved by the integrated model with combined modes for

Iquique, both on the traffic and transit networks, are graphically shown in

Figs. 11 and 12 respectively, with the two original parking lot locations from year

1998. Modal split in equilibrium obtained for users with car available, shows

that 67% of the trips are by car, 28% by bus and 5% choose the combined mode.

By observing the transit network, the STE model shows high levels of passenger

congestion in the south of the city (lower part of Fig. 11), in the arcs close to the

parking lots. In those places, users who choose the combined mode make modal

interchange from car to buses, which in their majority are going to downtown

Iquique, located at the upper left area of Fig. 11. MTE model shows low levels

of vehicle congestion in the road network around the city.

The integrated equilibrium model algorithm tested on the described Iquique

instance reached a relative similarity of flows for both networks lower than 10−5
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Figure 11: STE equilibrium, Iquique network

after 50 iterations, as shown in Fig. 13, using the flows average from the last 3

iterations as MSA convergence measure. Overall CPU time is 40 min on a 2.4

GHz processor for this instance.

5. Conclusions

In this paper we present an integrated traffic-transit stochastic equilibrium

model, based on state of the art equilibrium models for transit and traffic, such

as STE (Cortés et al., 2013) and MTE (Baillon and Cominetti, 2008). The model

explicitly includes the uncertainty that drivers as well as passengers experiment

while they are choosing routes (strategies) until completing their trip, recog-

nizing that within the population the lack of knowledge about conditions and
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Figure 12: MTE equilibrium, Iquique network

physical characteristics of the networks cause different perceptions among peo-

ple. It allows us as well to propose an integrated stochastic equilibrium scheme,

which captures the interaction between the two modes, recognizing that both

cars and buses share the same road infrastructure in many urban areas over

the world. Moreover, the integrated equilibrium model reflects the interaction

at demand and modal split level, as part of the population has the option to

choose between the two modes or even combine them in a park and ride scheme.

We have shown how to apply the STE model to real networks considering

their specific characteristics. The major issue is to study the equilibrium con-

ditions of Definition 1 for the cases of nodes that are adjacent to arcs that have

infinite frequency. A second issue is how to construct an extended network that
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Figure 13: MSA iterations, Iquique network

results from the provided operation pattern of the transit system, incorporat-

ing stop nodes, alighting and boarding arcs as well as access arcs that connect

centroids to bus stops nodes.

We provide an algorithm to obtain the integrated stochastic equilibrium (for

both pure and combined modes cases) and we present numerical experiments

on real networks. In these experiments we have observed, as expected, that

an increase in stochasticity causes more dispersion on equilibrium flows and

an increase in expected travel time. The implementation on a large network,

including combined modes, reaches equilibrium flows in a fairly reasonable ex-

ecution time. In terms of policy issues and implications, we strongly believe

that even at a strategic level modeling, the stochastic aspect of human behavior

when making daily travel decisions in real urbanizations play a fundamental

role, and can make a difference when policy makers decide the investment in

different transport projects and plans; then, the development of an efficient tool

for modeling all these aspects under an equilibrium scheme considering public

and private transport in an integrated scheme can make a major difference in

such important decisions for people.

The general algorithm proposed to solve the integrated equilibrium consol-
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idates the formulations and methods of each model individually. One of the

major advantages in this sense is that the resolution of partial equilibria is pos-

sible to be conducted simultaneously, rather than sequentially, which implies an

important computational time reduction and consistency of the final results.

It should be noted that even tough in this article we propose a hierarchical

logit modal split formulation between the two systems, the integrated equi-

librium model is flexible enough for integrating other modal split proposals,

without losing the structural elements of the final joint stochastic equilibria.

This issue could be explored as a next step of this research, together with

other research questions such as the appropriate formulation of the conditional

probability of boarding. Other issues to analyze in the future are related to

convergence and uniqueness of solutions for the integrated approach built from

results already proved for the separate cases.

In algorithmic terms, the increase in convergence speed to an equilibrium

using other methods different from MSA is another topic that requires further

study. For example, optimizing the value of the step value between the induced

flow and the resulting flow vectors by other numerical methods based on linear

search or Newton’s method may result in a faster execution of the algorithm.
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