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We present a transit equilibrium model in which boarding decisions are stochastic. The
model incorporates congestion, reflected in higher waiting times at bus stops and increas-
ing in-vehicle travel time. The stochastic behavior of passengers is introduced through a
probability for passengers to choose boarding a specific bus of a certain service. The mod-
eling approach generates a stochastic common-lines problem, in which every line has a
chance to be chosen by each passenger. The formulation is a generalization of deterministic
transit assignment models where passengers are assumed to travel according to shortest
hyperpaths. We prove existence of equilibrium in the simplified case of parallel lines (sto-
chastic common-lines problem) and provide a formulation for a more general network
problem (stochastic transit equilibrium). The resulting waiting time and network load
expressions are validated through simulation. An algorithm to solve the general stochastic
transit equilibrium is proposed and applied to a sample network; the algorithm works well
and generates consistent results when considering the stochastic nature of the decisions,
which motivates the implementation of the methodology on a real-size network case as
the next step of this research.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Public transport assignment models have been formulated to properly represent the way in which the passengers of a
transit system utilize the available supply (in terms of infrastructure, line frequencies and other predefined operational
rules) for travelling through the transit network from different origins to different destinations. This problem has been sub-
ject of many studies during the last decades, mainly oriented to systems of buses; most proposed models have been designed
to properly represent the passenger behavior when moving within the transit network, with the objective of predicting equi-
librium conditions under hypothetical scenarios, with the final goal of studying the potential benefits of high impact public
transport projects in large cities and metropolitan areas. For strategical purposes, these models have been incorporated in
more general frameworks, mostly with the objective of reaching global traffic equilibrium conditions in cases where multiple
transport modes interact.

In terms of passenger behavior, the recent literature has been oriented to model passenger preferences assuming that
they use path selection strategies to reach their destinations. Originally, Spiess and Florian (1989) define a strategy as a
set of rules that, when applied, allows the passenger to reach his(her) destination, and the decisions are made at each node
where boarding is allowed. A properly defined strategy includes the choice of sets of attractive lines at bus stops (also called
common-lines) as described by Chriqui and Robillard (1975) and Spiess and Florian (1989). The notion of strategy implies
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that passengers have good knowledge of the network structure and conditions; therefore, they are able to identify and utilize
effective strategies (Bouzaiene-Ayari et al., 2001). The problem of minimizing the expected cost – that should include at least
in-vehicle travel, access and waiting times for passengers – can be then modelled as a user equilibrium problem on the
hyperpath space, concept introduced in graph-theory language by Nguyen and Pallottino (1989) and then applied to a transit
assignment problem (Nguyen and Pallottino, 1988). An hyperpath is basically an acyclic subgraph connecting a single origin–
destination, paired with a given vector of real arc values. Nguyen and Pallottino (1989) show that the notion of hyperpath
can be derived from a relaxation of the definition of a path. This description from graph theory permits converting the pas-
senger assignment problem into a standard equilibrium problem on a private car network.

The first studies did not consider a relevant issue in passenger transit assignment, namely the congestion produced at bus
stops when the capacity of transport is not enough to serve the demand for that service. The original models without con-
gestion were reasonable under low passenger demand conditions at bus stops (Nguyen and Pallottino, 1988; Nguyen and
Pallottino, 1989; Spiess, 1984; Spiess and Florian, 1989), and in those cases, the result of the assignment models is equivalent
to finding the equilibrium of the transit system. If that is not the case (for example in many Latin American capitals during
peak hours), the reduced capacity is reflected in higher waiting times for passengers as they cannot always board the next
bus arriving to the stop. The issue of capacity was first treated by Gendreau (1984) who generated much complex formula-
tions as the waiting process was based on a bulk queue model, making impossible to properly formulate the equilibrium
under congestion at bus stops. De Cea and Fernández (1993) developed an alternative model assuming that passengers travel
through a sequence of successive intermediate nodes, allowing choices among multiple lines at a given stop only in that they
all share the next stop to be served (simplified version of an hyperpath-based formulation). The authors were able to heu-
ristically incorporate congestion at bus stops, through a model built on an augmented graph very expensive from a compu-
tational standpoint, and where the obtained flows can exceed the capacity of the vehicles as the functional form used to
represent congestion was not asymptotic on capacity. In addition, in this model the common-lines between intermediate
nodes are computed heuristically and therefore there is no guarantee of reaching equilibrium conditions.

Wu et al. (1994) studied a congested network assignment model with passengers travelling according to shortest hyper-
paths. Travel times as well as waiting times are considered to be flow dependent, but the passenger assignment is based on
the nominal frequencies of the lines. Bouzaiene-Ayari et al. (2001) extend the Wu et al. (1994) model to study existence and
uniqueness of equilibria considering that the flow distribution is done proportionally to the inverse of the waiting time of
each line. Their proposal does not permit the use of congestion functions borrowed from queuing theory (as under conges-
tion waiting times go to infinity) and also assume travel-time functions to be strongly monotone, which prevents the model
from being used in the case of constant travel times. Cominetti and Correa (2001) analyze an hyperpath-based equilibrium
model for passenger assignment in general transit networks including explicitly the congestion effects at bus stops over the
passenger’ choices. Congestion is treated by means of a bulk queue model at the stops. The authors provide a complete char-
acterization of the set of equilibria in the common-lines setting, including the conditions for existence and uniqueness. They
show that over certain ranges, an increase of flow does not affect the system performance in terms of transit times. The
authors study a general equilibrium model supporting multiple origins and destinations, overlapping bus lines, as well as
transfers at intermediate nodes on a given trip; the authors model this general case through a dynamic programming ap-
proach for representing a common-lines scheme including congestion effects, and are able to establish the existence of a net-
work equilibrium. Cepeda et al. (2006) extend the formulation by Cominetti and Correa (2001) obtaining a new
characterization of the equilibria in the context of a congested transit networks with capacity constraints at bus stops; by
using this approach, it is possible to formulate an optimization problem in terms of a computable gap function that vanishes
if the solution reaches equilibrium. The method leads to an algorithm that uses the method of successive averages (MSA)
from where they are able to find equilibrium conditions on large-scale networks with congestion. More recently, Codina
(2012) reformulates this congested transit equilibrium assignment model as an equivalent variational inequality, obtaining
broader conditions for the existence of solutions. Schmöcker et al. (2008) develop a capacity constrained transit assignment
model in a dynamic fashion, allowing passengers not able to board a vehicle in a previous period, to be transferred to the
next interval. The common-lines problem is considered and the search for the shortest hyperpath is influenced by a fail-
to-board probability introduced by the potential overcrowding (for example during peak periods) at certain intervals. The
dynamic approach adds a priority rule in the network loading process not able to properly consider in a static assignment.
One major assumption behind the common-lines setting in these models is the memoryless assumption behind the renewal
process assumed each time a bus arrives, at a stop. Nöekel and Wekeck (2009) compares several cases of behavioral assump-
tions regarding transit service regularity as well as passenger information. Significant differences were found in the choice-
set composition and route splits, so the authors conclude that the selection of the most suitable choice models – and behav-
ioral assumptions – are relevant.

The above discussed models add a relevant feature in transit assignment (and in some cases in transit equilibrium) mod-
eling, which is the inclusion of congestion at stops (or stations) as part of the proper representation of passenger behavior;
the congestion is related to the impact on the system performance due to capacity constraints associated with the finite size
of vehicles. This phenomenon precludes some passengers to board the vehicles, in all these cases due to a hard constraint.
However, it could be the case where passengers are observed not to board a bus of certain line even though the bus has
capacity available. We claim that there are other external conditions that could modify the passenger behavior in transit
assignment not related to capacity constraints. The work by Nguyen et al. (1998) shows a stochastic assignment model based
on the hyperpath framework for transit networks. The stochasticity added in this case is through a Logit assignment struc-
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ture at the hyperpath decision of the passengers at the boarding nodes. The authors are able to model stochasticity in the
context of transit assignment, although they neither consider global transit equilibrium, nor add capacity constraints at
stops.

The hyperpath concept has not only been included in frequency-based assignment models, but also in scheduled-based
schemes. Hamdouch and Lawphongpanich (2008) proposed a scheduled-based transit assignment model that considers the
vehicles’ capacities explicitly, where passengers decide their travel options using strategies. The authors conclude that the
proportion of passengers who have to wait for the next bus is similar to the failure-to-board probabilities that appear in pre-
viously mentioned frequency-based models. Hamdouch et al. (2011) extended their model differentiating the discomfort le-
vel experienced by sitting and standing passengers, capturing the uncertainty of getting a seat.

The goal of the present paper is to add the stochastic effect into boarding decisions at bus stops, in the context of a transit
equilibrium model with congestion at bus stops, reflected in potential higher waiting times due to overcrowding of the sys-
tem. The model is an extension of the proposal of Cominetti and Correa (2001) and Cepeda et al. (2006), where passengers
are assumed to travel according to shortest hyperpaths. Travel times are not necessarily monotone and congestion affects
both the waiting times and the flow distribution. The stochastic behavior of passengers is introduced through a distribution
of probabilities for passengers to board a specific bus of certain service that can be characterized by its observed frequency at
that stop and its travel time to the next stop. The modeling approach generates a stochastic common-lines problem, in which
every line has a chance to be chosen by each passenger, even if the service quality offered by the line is quite poor. The
formulation also incorporates capacity constraints due to overcrowding at stops in the same way as Cepeda et al. (2006)
propose. The formulation is a generalization of the hyperpath model for the deterministic case, which can be recovered
by properly setting the probability of choosing the available lines to one or zero depending on the service provided by
the line.

We prove existence of equilibrium in the simplified case of parallel lines (stochastic common-lines problem) to show the
consistency of the proposed model, extending later the formulation to a more general network problem. Under this stochas-
tic formulation for the more general model, the recursive expressions for the time-to-destination functions can be analyti-
cally found together with the line flows at equilibrium, by solving a set of simultaneous stochastic common-lines problems
(one for each origin–destination pair), coupled by flow conservation constraints; note the difference with the deterministic
models with congestion (Cominetti and Correa, 2001; Cepeda et al., 2006), in which finding the equilibrium requires solving
a set of generalized Bellman equations. Linked to that, the implementation of the model is less cumbersome and allows mod-
eling other line penalties different from waiting and travel times through a proper expression of the choice probabilities. As it
seems quite difficult to write analytical expressions for the expected waiting times at stops when including stochastic behav-
ior in the passenger assignment model with congestion, we decide to validate our proposed stochastic formulations through
simulation, analyzing different cases in terms of demand, line probabilities and arrival rates of passengers. Then, an algo-
rithm to solve the resulting stochastic equilibrium on a general network is proposed and solved for the same network intro-
duced in Cepeda et al. (2006) using a logistic function for the boarding probability at bus stops.

It is worth to mention that a stochastic model in passenger behavior allows us to provide a more realistic representation
of the decisions made by passengers in a context of equilibrium under bus capacity congestion based on minimum hyper-
paths. Notice that even in perfectly scheduled transit systems, headways show variability, which becomes significant in
many big cities all over the world, mainly in Asia and Latin American countries, where normally roads are not exclusive
for buses, and in most cases the circulation lanes are shared with private cars and other transport modes. In addition, transfer
operations at bus-stops influence actual travel times, and that strongly depends on the number of passengers boarding and
alighting and the way transfers are performed as well. Therefore, even though users could have a good intuition of the travel
times associated with different bus lines (services) they have available to accomplish their travel needs, uncertainty in such
travel times is always present; we assume that individuals have a good in-advance intuition (from their own travel experi-
ence, for example) of the services that could experience unexpected delays with higher probability than others. This fact be-
comes serious from the user perspective, in situations where travel times can clearly show high variability, for example
during peak hours. The individuals behavior also depend on the ultimate objective of each specific trip. For example, getting
on time to a very important appointment is behaviorally different from getting some delay in case of going shopping. In this
sense, our approach is somehow similar to traditional stochastic equilibrium models for private cars (Baillon and Cominetti,
2008); in this paper we model the transit equilibrium considering that passengers make decisions based on their perceptions
of travel times, and not necessarily on actual travel times. Our model incorporates the stochasticity embedded in this travel
time perception at the passenger boarding decision, through the probability distribution used to decide whether to board a
specific bus or not after its arrival to the bus-stop where the potential passenger is waiting.1

The paper is organized as follows. In Section 2 the transit equilibrium model for the simple case of one origin–destination
is presented, which is then extended to a general network formulation at the end of the section. Next, in Section 3, a queuing
model for a single stop and multiple lines is formulated and later validated through simulation. In Section 4 an efficient algo-
rithm to solve the general stochastic transit equilibrium is presented and applied to the network of the example in Cepeda
et al. (2006). In Section 5, final remarks and further developments are highlighted.
1 For a more comprehensive review of stochastic transit and traffic models see Correa and Stier-Moses (2011).
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2. Transit model

2.1. Stochastic common-lines

We propose a stochastic common-lines approach in which perception of travel time is random across passengers.
Consider the network depicted in Fig. 1 consisting of an origin O and a destination D nodes, connected by a finite set of

arcs or links A. Each arc a represents a bus line that serves the origin-destination pair (OD pair). Each line a 2 A is character-
ized by two elements. The first one is a constant in-vehicle travel time ta 2 Rþ. The second one is the frequency of service of
the line fa. Since large flows and limited capacity of buses may prevent passengers from boarding a bus, congestion at the bus
stop increases their waiting times. To model this situation we will assume that the frequency of service of each line is mod-
eled by a strictly decreasing and smooth effective frequency function of the flow on bus line a;va; fa : ½0; �va½!�0;þ1½ that van-
ishes at �va. This is fa ? 0 when va ! �va (Cominetti and Correa, 2001).

A stochastic model provides the probability pa of a passenger wishing to board a bus at the bus stop, given that a bus of
line a has arrived at the bus stop:
pa ¼ Pðwishes to board busjbus of line a is at stopÞ:
Each passenger that wishes to travel from O to D, compares the travel time on the current bus, with the expected travel time
of waiting for the next bus:
if passenger boards bus , travel time ta;

if passenger does not board bus , travel time T:
Our approach is a natural extension of the original common-lines paradigm that appears in almost all previous literature
in transit assignment. One major assumption behind such a modeling approach is that the arrival process is completely re-
newed each time a bus arrive to certain bus stop. If this assumption is not considered, all the analytical foundations of our
modeling approach do not apply whatsoever. Particularly, the deterministic case could not be recovered from a generalized
model and that would change all the theory used as an extension of the original deterministic proposals by Cominetti and
Correa (2001) and Cepeda et al. (2006). Then, under the above mentioned renewal assumptions, expected travel time can be
calculated as:
T ¼ 1P
afaðvaÞ

þ
X

a

faðvaÞP
a0 fa0 va0ð Þ ½pata þ ð1� paÞT�: ð1Þ
The first term is the standard expression for expected waiting time for the next arrival. The second term is related to ex-

pected travel time; once a bus of line a arrives, which occurs with probability faðvaÞP
a0

fa0 va0ð Þ, expected travel time consists of

in-vehicle time with probability pa, corresponding to the service if it is chosen (in such a case there is no extra waiting);
and with probability 1 � pa the passenger starts the complete process again from the beginning, spending an extra expected
time T.

Clearing T in (1) we get an expression T(v, p).
Tðv ;pÞ ¼ 1þ
P

afaðvaÞpataP
a0 fa0 va0ð Þ �

P
afaðvaÞð1� paÞ

¼ 1þ
P

afaðvaÞpataP
afaðvaÞpa

Tðv ;pÞ ¼ 1P
afaðvaÞpa

þ
X

a

ta
faðvaÞpaP
a0 fa0 ðva0 Þpa0

ð2Þ
Considering (2), we can re-interpret Eq. (1). The expression 1P
a

fapa
can be interpreted as an expected waiting time that takes

into account the stochastic model of boarding, while expression fapaP
a0

fa0 pa0
is the probability of boarding bus line a. In Section 3

we study the validity of these two expressions.
Fig. 1. A simple network: an origin destination pair connected by parallel links.
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Consider a flow x > 0 of passengers that wish to travel from O to D. Total flow splits among all possible bus lines so that

x ¼
P

a2Ava. Since the probability with which passengers board bus line a is fapaP
a0

fa0 pa0
, bus load at a bus stop can then be cal-

culated by the system of equations:
va ¼ x
faðvaÞpaP
a0 fa0 ðva0 Þpa0

a 2 A: ð3Þ
Expression (2) along with the system (3), provide a set of equations on v = (va)a2A and p = (pa)a2A. A solution to this extended
system is a transit equilibrium of this simple network.

Deterministic case. If decisions are deterministic, then
pa ¼
0 if ta > T
1 if ta < T

�

This leads to the common-lines paradigm. Indeed, solving minpT(v, p) we obtain the solution to the common-lines problem
(Chriqui and Robillard, 1975; Bouzaiene-Ayari et al., 2001; De Cea and Fernández, 1993). This particular case of common-
lines under congestion is rigourously studied in Cominetti and Correa (2001) and Cepeda et al. (2006).

Non-deterministic case. If decisions are stochastic, then each passenger has probability pa of wishing to board a bus of line
a when this bus is at the bus stop. This probability is given by a stochastic model and depends on the expected travel time.
We will assume that pa is a strictly decreasing continuous function of the difference between travel time in line a and ex-
pected travel time T;ua : R!�0;1½:
pa � uaðta � TÞ: ð4Þ
We introduce these functions merely as tools that are used to model the stochastic decision of boarding and are to be deter-
mined by the modeler. Below we provide a condition that they must satisfy to assure existence of equilibrium.

Under this formulation, it is no longer possible to obtain T as a function of (v, p) as in (2). We have to state the equilibrium
conditions in terms of the variable s⁄ that represents equilibrium expected travel time from O to D. A second set of equations
comes from the network load (3). We may now state a definition of equilibrium for our model.

Definition 1. A stochastic common-lines equilibrium is a pair ðv�; s�Þ 2
Q

a2A½0; �va½�Rþ, such that
s� ¼ Tðv�;pÞ;

v�a ¼ x
pafa v�a

� �P
a0 fa0 v�a0
� �

pa0
8a 2 A;
and
pa ¼ uaðta � s�Þ 8a 2 A:
We can see the deterministic model as a limit case of the stochastic one. In the latter, what we get is the hyperpath set
where all strategies are valid, although some of them have very low probability of being chosen.
2.2. Existence of stochastic common-lines equilibrium

We now prove existence of equilibrium for the simple network of the previous section.

Proposition 1. Consider a flow x > 0 of passengers that wish to travel from O to D. If
P

a2A �va > x and for all a 2 A, the functions ua

are differentiable and satisfy:
su0aðsÞ þuaðsÞ > 0 8s; ð5Þ
then there exists a stochastic common-lines equilibrium in the network with one OD pair and n parallel links.
Proof. We proceed by constructing a continuous function that goes from a compact and convex set into itself, whose fixed
point is associated with a stochastic common-lines equilibrium.

For this, let us begin by considering the first equilibrium condition s⁄ = T(v⁄,p), which comes originally from Eq. (1). If in
(1), for each a 2 A we replace the values pa by the functions ua, rearranging terms we may obtain:
0 ¼ 1þ
X

a

faðvaÞ � ðta � TÞ �uaðta � TÞ; ð6Þ
where T is a positive variable, not the function defined on (2). Eq. (6) relates expected travel time T to v. For a given v, the
right hand side of (6) tends to �1when T ? +1 and it is positive in T = 0. Therefore, since for all a, ua is continuous, Eq. (6)
has a solution in T. Condition (5) implies that the right hand side of (6) is strictly increasing as a function of T and so this
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solution is unique (note that condition (5) holds trivially for all s 6 0 and so is a restriction for ua only on s > 0). Let us denote
this solution by eT ðvÞ.2

Now, coupling (4) and (3) and replacing T by eT ðvÞ, we obtain, for each a 2 A the flow va as a function of v.
2 Con

3 The
4 Usu

restrict
5 Of c
va ¼ x
faðvaÞua ta � eT ðvÞ� �

P
a0 fa0 ðva0 Þua0 ta0 � eT ðvÞ� � 8a 2 A: ð7Þ
Let us consider the right hand side of (7) as a function of v. Clearly it is well defined for v 2
Q

a2A½0; �va½. Condition (5)
implies that eT ðvÞ is a continuous function3 and so the right hand side of (7) is as well a continuous function. Moreover, this
function may be extended continuously to the set V � v 2 RjAjþ :

P
a2Ava <

P
a2A

�va
� �

.
Consider then, for each a 2 A, the function Va : V ! ½0; x� as:
VaðvÞ :¼
x

faðvaÞua ta�eT ðvÞð ÞX
a0 s:t: va0<�va0

fa0 ðva0 Þua0 ta0 �eT ðvÞð Þ
if va < �va

0 if va P �va:

8>><>>:

Note that if " a0 – a;va0 P �va0 , then Va(v) = x. Furthermore, for v 2 V
X

a2A

VaðvÞ ¼ x:
Thus, we may define then the function V : VðxÞ ! VðxÞ as:
VðvÞ :¼
Y
a2A

VaðvÞ
with VðxÞ :¼ v 2 RjAjþ :
P

a2Ava ¼ x
� �

.
Since

P
a2A �va P x;V is a well defined continuous function, from VðxÞ in itself. The set VðxÞ is compact, convex and non

empty and so V has fixed point v⁄. Defining s� :¼ eT ðv�Þ it is direct to see that (v⁄,s⁄) is a stochastic common-lines
equilibrium. h
2.3. General formulation

We now formulate the stochastic equilibrium model for general transit networks. Network structure and notation follow
Cepeda et al. (2006), who in turn consider transit networks as built in Spiess and Florian (1989).

The formulation is developed on a general directed graph G = (N, A). We denote by ia and ja respectively the tail and head
nodes of a link a 2 A, and we let Aþi ¼ fa 2 A : ia ¼ ig and A�i ¼ fa 2 A : ja ¼ ig be the sets of arcs leaving and entering node
i 2 N.

The set of destinations is denoted D � N, and for each d 2 D and every node i – d a fixed demand gd
i P 0 is given.4 To keep

the model tractable we need to specify arc-destination flows. The set V :¼ RjAj�jDjþ denotes the space of arc-destination flow vec-
tors v with nonnegative entries vad P 0, while V0 is the set of feasible flows v 2 V such that vad = 0 for all a 2 Aþd (i.e. no flow with
destination d exits from d) and satisfying the flow conservation constraints
gd
i þ

X
a2A�i

vad ¼
X
a2Aþi

vad 8i – d:
The formulation in this section differs from the previous one in that now we will allow in-vehicle travel time ta and the
effective frequency functions to depend on the vector of link flows v. We introduce this modification because when we study
passenger assignment and stochastic transit equilibrium in more general networks this dependence is unavoidable. In-vehi-
cle travel time in a specific link of a transit network is indeed affected by the flow of passengers that board and alight the bus
either at the end or at the beginning of the link.5 Similarly, waiting times do not only depend on the boarding flows and oper-
ational characteristics of the lines but also on the on-board flows which consume part of the line capacity.
dition (5) states that the probability ua must go to zero faster than �ua ðsÞ
s . An example of a function that satisfies condition (5) is

uaðsÞ ¼
1
2
þ arctanðsÞ

p :

Implicit Function Theorem holds (See for instance Simon and Blume, 1994, Theorem 15.2, p. 341).
ally the demands gd

i are strictly positive only at nodes i corresponding to stop-nodes, that is to say the bus stops where users wait for service, but no
ion is imposed.
ourse, in the simple network framework this phenomenon is not present since no passengers board buses at D.
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To be precise, we assume that each link a 2 A is characterized by a continuous travel time function ta : V ! ½0;�ta½, where �ta

is a finite upper bound, and the effective frequency function fa : V ! ½0;þ1� which is either identically +1 or everywhere
finite, in which case, for each d 2 D we assume that fa ? 0 when vad ! �va with fa(v) strictly decreasing with respect to vad

when strictly positive.
The intuitive idea behind the notion of a stochastic transit equilibrium follows directly from Cominetti and Correa (2001)

and Cepeda et al. (2006). Consider a passenger heading towards destination d and reaching an intermediate node i in his trip
(see Fig. 2). To exit from i he can use the arcs a 2 Aþi to reach the next node ja. By taking the arc travel times ta(v) and the
transit times sjad from ja to d as fixed, the decision faced at node i is a common-lines problem with travel times
taðvÞ þ sjad and effective frequencies corresponding to the services operating on the arcs a 2 Aþi . The solution of this stochas-
tic common-lines problem determines the transit time sid from i to d. Time to destination sid(v) from each node i to desti-
nation d is obtained from the stochastic common-lines problem from i to d characterized in Definition 1 with ta ! taðvÞ þ sjad

if i – d and sdd = 0.6

All variables sjad and vad must be determined at the same time, so the stochastic transit equilibrium is formulated as a set
of simultaneous stochastic common-lines problems (one for each id pair), coupled by flow conservation constraints. We de-
fine for each v 2 V the flow entering node i with destination d by:
6 Not
xidðvÞ :¼ gd
i þ

X
a2A�i

vad:
Definition 2. A pair of feasible flow vector and expected travel times ðv�; s�Þ 2 V0 � R
jNj�jDj
þ is a stochastic transit equilibrium

if for all d 2 D and i 2 N, with i – d we have:
s�id ¼
1þ

P
a2Aþi

pd
afaðv�Þ taðv�Þ þ s�jad

� �
P

a2Aþi
faðv�Þpd

a
;

v�ad ¼ xidðv�Þ
faðv�Þpd

aP
a2Aþi

faðv�Þpd
a
; 8a 2 Aþi ;

pd
a ¼ uðtaðv�Þ þ s�jad � s�idÞ; 8a 2 Aþi :
The conditions in a stochastic transit equilibrium are a direct adaptation from the deterministic ones that characterize a
transit network equilibrium (Cominetti and Correa, 2001; Cepeda et al., 2006). A significant difference that arises from the
incorporation of a stochastic model of boarding, is that we withdraw strategies as a modeling tool since at every bus stop
every line has a positive boarding probability. Consequently expected travel time, s, is obtained directly by a functional form
instead of a dynamic programming problem.
3. Queuing model

In this section, we focus the public transport system analysis on the operation of one isolated bus stop served by L bus
lines. The goal is to provide a queue-theoretic framework to support the stochastic assignment model with congestion that
we are proposing in Definition 1, justifying the formulae
Expected waiting time :
1P

afaðvaÞpa
ð8Þ

Probability of boarding bus line a :
faðvaÞpaP
a0 fa0 ðva0 Þpa0

ð9Þ
e that ta(v) does not depend on the flow on arc a and so can be considered constant in the stochastic common-lines problems where it participates.
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3.1. Uncapacited bus lines

First of all, we prove that Eqs. (8) and (9) hold under no capacity constraints on the buses. First, we study the case of a
single bus line with Poisson arrivals of rate l and a boarding probability p. Let Xi be the inter-arrival time between two con-
secutive buses. Therefore, a passenger will board the bus at its kth arrival with probability (1 � p)k�1p and with a waiting
time equal to

Pk
i¼1Xi. Since Xi follows an exponential distribution with parameter l, the expected waiting time is given by
W ¼
X1
k¼0

ðkþ 1Þ 1
l
ð1� pÞkp ¼ 1

pl
Suppose now the case of L parallel lines with rates la and boarding probabilities pa with a 2 1,...,L. We can model the ar-
rival of buses as one Poisson process of rate

P
a0la0 . Hence, the expected waiting time W of passenger is given by
W ¼ 1
�p
P

a0l0a
� �
where �p is the probability of boarding the bus at the bus stop, which is given by
�p ¼
X

a

pa
laP
a0la0

	 


Replacing this equation in previous formula, we obtain
W ¼ 1P
apala
On the other hand, the probability of a passenger to finally board bus line a is given by
da ¼
X1
i¼0

pa
laP
a0la0

	 

ð1� �pÞi ¼ pa

�p
laP
a0la0

	 

¼ palaP

a0pa0la0
3.2. Capacited bus lines

We now study the case where buses arrive with a limited capacity. The objective is to obtain analytical expressions to
compute the effective frequency function as well as the expected waiting times in the case of including stochastic behavior
in the passenger assignment model. The model is an extension of the one shown in Appendix A of Cominetti and Correa
(2001). In this case, passengers arrive according to a Poisson process of rate v, while buses arrive as a Poisson process as well,
with rate l for the single line serving the stop, with random available capacity C, where PðC ¼ jÞ ¼ qj; j ¼ 0; . . . ;K. In Com-
inetti and Correa (2001) if a bus arrives with available capacity larger than the queue length, the latter reduces to zero. The
difference with the Cominetti and Correa (2001) model is that in this stochastic version, some passengers could eventually
decide not to get on a certain bus and wait for the next one, even if that bus had available capacity to accommodate those
passengers. Although a random passenger could eventually take a bus of the same line that was rejected in a previous trial,
what matters in stationary equilibrium is the distribution of passengers over bus services.

As before, assuming that p is the probability with which a certain passenger boards a random bus at the bus stop, then the
queue length is a continuous time Markov chain with transition rates
hk;kþ1 ¼ v; k P 0;

hk;k�j ¼ l½PðC > jÞPðboard jjthere are kÞ k P 1 and
þPðC ¼ jÞPðboard P jjthere are kÞ�; 0 6 j 6 minfk;Kg;

hk;0 ¼ lpk
XK

j¼k

qj; 1 6 k 6 K;
where Pðboard jjthere are kÞ and Pðboard P jjthere are kÞ are the probability that j passengers board the bus given that
there are k passengers already queuing and the probability that more than j passengers board the bus given that there
are k passengers already queuing, respectively. These probabilities can be computed as follows:
Pðboard jjthere are kÞ ¼
k
j

	 

pjð1� pÞk�j ð10Þ

Pðboard P jjthere are kÞ ¼
Xk

l¼j

k

l

	 

plð1� pÞk�l ð11Þ
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The stationary distribution P = {pk}kP0 is characterized by the balance equations obtained from the solution of the system
PTP = P, where P is the matrix of transition probabilities of the queue length. These probabilities are equal to the transition
rates divided by (v + l). We solve then the system HTP = P(v + l), considering h0,0 = l. In Appendix A the analytical calcu-
lations of this queuing model considering the stochastic case are shown in detail, obtaining the following system:
Table 1
Values

[p1, p

[l1, l
[1, 1

[1, 0

[0.8,

[0.8,

[0.5,

[0.5,

[0.4,

[0.4,

[l1, l
[1, 1

[1, 0

[0.8,

[0.8,

[0.5,

[0.5,

[0.4,

[0.4,

[l1, l
[1, 1

[1, 0

[0.8,

[0.8,

[0.5,

[0.5,

[0.4,

[0.4,
vp0 ¼ l
XK

l¼1

ql

Xl

k¼1

pkpk;

ðv þ lÞpk ¼ pk�1v þ l
XK

l¼0

ql

Xl

j¼0

pkþjPðboard jjthere are kþ jÞ þ pkþlPðboard > ljthere are kþ lÞ
" #

; 8k P 1: ð12Þ
and relative gaps between simulated and estimated waiting times and boarding probabilities under different scenarios.

2] K = 42 K = 80 K = 160

Sim Est gap Sim Est gap Sim Est gap

2] = [12, 12]
] W 0.046 0.046 �0.57% 0.044 0.044 �0.36% 0.042 0.042 0.30%

d1 0.500 0.499 0.31% 0.501 0.498 0.70% 0.498 0.502 �0.81%
.5] W 0.062 0.063 �0.60% 0.058 0.058 0.52% 0.057 0.057 0.11%

d1 0.649 0.641 1.28% 0.659 0.658 0.15% 0.660 0.661 �0.07%
0.8] W 0.057 0.057 �0.24% 0.054 0.054 0.38% 0.053 0.053 �0.33%

d1 0.501 0.500 0.17% 0.502 0.498 0.79% 0.501 0.501 0.11%
0.4] W 0.076 0.076 �0.25% 0.072 0.073 �1.02% 0.070 0.071 �0.23%

d1 0.653 0.648 0.78% 0.658 0.658 0.05% 0.664 0.663 0.05%
1] W 0.062 0.062 �0.62% 0.058 0.059 �0.81% 0.057 0.057 0.23%

d1 0.349 0.358 �2.70% 0.340 0.345 �1.55% 0.335 0.337 �0.77%
0.5] W 0.089 0.090 �0.67% 0.087 0.086 0.60% 0.084 0.084 �0.18%

d1 0.497 0.500 �0.65% 0.501 0.500 0.20% 0.499 0.500 �0.27%
0.8] W 0.076 0.077 �0.90% 0.072 0.073 �0.87% 0.070 0.071 �0.81%

d1 0.344 0.351 �2.12% 0.337 0.344 �1.95% 0.336 0.338 �0.42%
0.4] W 0.111 0.112 �0.23% 0.108 0.107 0.94% 0.105 0.105 0.07%

d1 0.502 0.500 0.35% 0.499 0.500 �0.24% 0.501 0.502 �0.09%

2] = [12, 6]
] W 0.065 0.065 �0.32% 0.059 0.060 �0.36% 0.057 0.057 �0.12%

d1 0.664 0.665 �0.13% 0.665 0.666 �0.28% 0.668 0.667 0.17%
.5] W 0.078 0.079 �1.74% 0.071 0.072 �1.19% 0.069 0.069 0.35%

d1 0.785 0.776 1.13% 0.791 0.789 0.22% 0.796 0.796 0.03%
0.8] W 0.079 0.079 0.48% 0.074 0.073 0.12% 0.071 0.071 0.19%

d1 0.668 0.667 0.19% 0.666 0.664 0.32% 0.665 0.664 0.14%
0.4] W 0.095 0.096 �1.33% 0.089 0.088 0.93% 0.085 0.086 �0.95%

d1 0.785 0.780 0.66% 0.794 0.793 0.15% 0.795 0.795 0.00%
1] W 0.096 0.099 �3.02% 0.088 0.090 �1.30% 0.086 0.086 �0.25%

d1 0.525 0.550 �4.73% 0.513 0.520 �1.32% 0.506 0.509 �0.60%
0.5] W 0.122 0.123 �0.50% 0.116 0.116 �0.32% 0.113 0.114 �0.30%

d1 0.666 0.666 0.02% 0.666 0.667 �0.07% 0.665 0.666 �0.12%
0.8] W 0.118 0.120 �1.56% 0.111 0.111 �0.02% 0.107 0.107 �0.40%

d1 0.523 0.540 �3.20% 0.512 0.516 �0.78% 0.505 0.507 �0.41%
0.4] W 0.152 0.153 �0.20% 0.146 0.145 0.99% 0.142 0.142 0.05%

d1 0.665 0.668 �0.47% 0.668 0.666 0.26% 0.666 0.666 �0.02%

2] = [6, 3]
] W 0.184 0.178 3.41% 0.133 0.133 �0.09% 0.120 0.120 0.00%

d1 0.666 0.667 �0.11% 0.664 0.667 �0.47% 0.663 0.664 �0.11%
.5] W 0.210 0.224 �6.64% 0.157 0.162 �3.08% 0.142 0.144 �1.14%

d1 0.756 0.716 5.30% 0.785 0.772 1.69% 0.793 0.789 0.54%
0.8] W 0.206 0.205 0.40% 0.160 0.159 0.47% 0.148 0.148 �0.12%

d1 0.664 0.668 �0.60% 0.666 0.668 �0.24% 0.666 0.667 �0.11%
0.4] W 0.245 0.254 �3.44% 0.193 0.193 �0.18% 0.177 0.177 �0.02%

d1 0.760 0.737 3.05% 0.783 0.780 0.39% 0.795 0.793 0.29%
1] W 0.249 0.264 �6.19% 0.195 0.198 �1.57% 0.178 0.178 �0.17%

d1 0.570 0.637 �11.89% 0.533 0.551 �3.39% 0.512 0.517 �1.10%
0.5] W 0.295 0.293 0.64% 0.248 0.249 �0.29% 0.233 0.232 0.44%

d1 0.665 0.666 �0.16% 0.664 0.668 �0.65% 0.668 0.670 �0.27%
0.8] W 0.296 0.311 �5.11% 0.239 0.245 �2.57% 0.220 0.222 �0.94%

d1 0.564 0.620 �10.05% 0.528 0.542 �2.60% 0.511 0.516 �1.09%
0.4] W 0.357 0.358 �0.25% 0.305 0.307 �0.64% 0.292 0.291 0.26%

d1 0.666 0.665 0.02% 0.666 0.666 �0.03% 0.666 0.668 �0.29%
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The problem with the obtained balance equations is the fact that the coefficients associated with the pk depend on the
equation being considered. In other words, Eq. (12) contains coefficients that depend on k and that makes impossible to solve
such a system analytically. Writing explicitly the probability expressions (10) and (11) we get
0 ¼ ð�v � lð1� q0Þð1� ð1� pÞkÞÞpk þ vpk�1 þ l
XK

l¼1

ql

Xl

j¼1

kþ j
j

	 

pjð1� pÞk þ pkþl

Xkþl

m¼lþ1

kþ l
m

	 

pmð1� pÞkþl�m

" #
:

As the previous expression could not be solved analytically through traditional stochastic processes and queuing theory
techniques, even for the simplest case of one line and one bus stop, we decide to test the validity of our stochastic formu-
lation through simulation, analyzing different cases in terms of demand, line probabilities and arrival rates. The details of
these experiments and the conclusions obtained from them regarding the consistency of the proposed stochastic transit
equilibrium model are highlighted in the next subsection.

3.3. Simulation experiments

First, we simulate the arrival of passengers at a rate v to a bus stop served by L bus lines with arrival rates la and boarding
probabilities pa. Each bus arrives to the bus stop with a random available capacity following an uniform distribution between
0 and K. At the arrival of a bus of line i, each passenger in the queue decides to get on the bus or wait for the next one (accord-
ing to probability pa). If the number of passengers willing to board the bus is greater than its available capacity, we select a
random subset of these passengers that board the bus. Using this simulation, we compute the empirical waiting time cW and
the fraction of passengers d̂a that board line a, for each a = 1 . . . L.

In order to validate Eqs. (8) and (9), we need to estimate the term pafa(v) for each bus line a under capacity constraints. In
order to do that, a second simulation is performed simulating each line individually. In these cases, we assume that passen-
gers arrive at a rate proportional to the fraction of passengers that board this line in the first simulation va ¼ d̂av and we
repeat the same steps of the first simulation, but this time with a single bus line a, for each a = 1 . . . L. On each line, we esti-
mate the value of pafa as 1

Wa
, where Wa is the average waiting time of passengers under the single-line simulation.

In Table 1 we show the results obtained in this simulation, for the case of two lines (L = 2), with different nominal fre-
quencies l1, l2; probabilities p1, p2; and maximum capacity K. In each simulation, we assume a passenger arrival rate of
v = 100, and we simulate 1 million events (including passengers and bus arrivals). In column ‘‘Sim’’ we show the resulting
waiting time cW and fraction of passengers boarding the first line p̂1, obtained by the first simulation. In column ‘‘Est’’ we
show the estimated parameters obtained by applying Eqs. (8) and (9), computed using the average waiting times W1, W2

from the single-line simulation. Finally, in column ‘‘Gap’’ we compute the relative difference between columns ‘‘Sim’’ and
‘‘Est’’.

As we can see, the simulated waiting times and probabilities are similar to the estimated values obtained from single-line
simulations, with average differences less than 2%. In particular, we can see that the deterministic case (p1 = p2 = 1) under
high congestion obtains gaps even greater than the average gap of the stochastic cases. The higher gaps are obtained on
the simulations under heavy congestion, asymmetric boarding probabilities and asymmetric nominal frequencies. This sys-
tematic bias needs further investigation, but it appears to come from the congestion, and not from the stochastic behavior of
passengers. In fact, with higher capacities these differences exceptionally exceed the 1%.

4. Implementation on a network

In order to implement our model on a general transit network, an artificial network has to be constructed in the way ex-
plained as follows: at each bus stop i, we create a bus stop node si representing the bus stop, and an additional line node v l

i for
Fig. 3. Construction of the auxiliary network.
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each line l that stops there. Boarding arcs si; v l
i

� �
as well as descending arcs v l

i; si
� �

are added to the original topology for each
line l. At each boarding arc, we set a travel time ta = 0 and a frequency fa = fl equal to the frequency of the bus line l. For each
descending arc, we set a travel time ta = 0 and a frequency fa =1. Additionally, we create arcs v l

i;v l
iþ1

� �
for each bus stop i

associated with bus line l, with travel time ta equal to the free-flow time, and frequency fa =1 (see Fig. 3). Note that each arc
going out from a bus stop node has associated a finite frequency, while each arc going out from a line node shows infinite
frequency.

In order to compute the stochastic equilibrium, we use Algorithm 1. In step 1, we compute an initial all-or-nothing flow
assignment using the shortest path to each destination. Then in step 2 we compute initial transit times s0

id by solving the
system of linear equations of step 11 using nominal frequencies and probabilities pd

a ¼ 1 if there exists a path from i to d
using arc a (and pd

a ¼ 0 if not). At each iteration k, we compute the pair sk
d; p

d
a

� �
using a fixed-point iteration for each desti-

nation d. Note that in step 11, we are solving a large sparse system of linear equations, that can be efficiently solved (see for
example Schenk et al., 2008; Schenk et al., 2007). In step 13, we reassign the flow on each arc a using the new probabilities pd

a

by solving a linear system involving Eq. (3) and flow-conservation equations. Finally, we update the flow vk using a MSA
iteration.

Algorithm 1. Implementation of stochastic transit equilibrium

1: Set an initial flow assignment v0 for each arc. Set k 0.
2: Set initial transit times s0

id.
3: repeat
4: k k + 1
5: Compute frequencies f k

a ¼ faðvkÞ and travel times tk
a ¼ taðvkÞ.

6: for all destination d do
7: Set s0

id  sk�1
id , set l 0.

8: repeat
9: l l + 1
10: Compute pd

a ¼ uðtk
a þ sl�1

jad � sl�1
id ) for all a 2 Aþi .

11: Solve the system of equations:
sl
id ¼

1þ
P

a2Aþi
f k
a pd

a � tk
a þ sl

jad

� �
P

a2Aþi
f k
a pd

a

if i is a bus stop node, and
sl
id ¼

P
a2Aþi

pd
a � tk

a þ sl
jad

� �
P

a2Aþi
pd

a

if i is a line node.
12: until sl

d � sl�1
d

�� �� < e

13: Assign flows v̂ad ¼ xid
f k
a pd

aP
a2Aþ

i
f k
a pd

a
for all a 2 Aþi when i is a bus stop node, or v̂ad ¼ xid

pd
aP

a2Aþ
i

pd
a

for all a 2 Aþi when i is

a line node.
14: end for
15: Update the flow assignment vkþ1 ¼ ð1� akÞvk þ akv̂ .
16: until kvk � vk�1k < e
Fig. 4. Example transit network from Cepeda et al. (2006).
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We implement the example from Cepeda et al. (2006), that appears in Fig.4, using the same parameters and frequency
assignment function. To simulate the boarding probabilities, we use the function uaðta � TÞ ¼ 1

1þehðta�TÞ, which only depends
on parameter h > 0. High values of h represents a near-deterministic behavior. Low values of h reflect willingness of passen-
gers to board buses with higher travel times than the expected time of the system. Although this function does not satisfy
condition (5), we do find an equilibrium in the example for every value of h.

As in Cepeda et al. (2006), we compare our stochastic transit equilibrium with the deterministic equilibrium under low
congestion (demand from A to C of 100 pax/h) versus a high congestion (demand from A to C of 350 pax/h) scenario. In Tables
2 and 3 we show the loads of each line under both scenarios, for different values of h. It can be seen that under high values of
h the system behaves similar to the deterministic case in both scenarios. However, under low values of h, passengers are will-
ing to wait for other buses, increasing the flow over the local lines for the low congestion scenario.

In summary, the computational results show that our stochastic equilibrium follows the expected behavior, observing
that the assignment becomes more disperse under a stochastic scheme than under a deterministic behavior. Moreover, un-
der severe traffic conditions (high congestion scenarios), both stochastic and deterministic network equilibriums are very
similar, independently of the value of h, which validates the structure of the generality of the stochastic model proposed.

5. Synthesis and conclusions

We have proposed a stochastic equilibrium model for transit assignment that includes capacity constraints (congestion at
bus stops). The stochastic aspect of the model is incorporated through passenger decisions of boarding a specific bus of cer-
tain line at the bus stop. In the classical approach of common-lines, parallel lines running between the same origin destina-
tion pair, passengers chose among this set of bus lines those that minimize expected travel time to their destination. In our
stochastic approach, the decision of choosing a line becomes stochastic. For a bus service, the probability of being chosen
depends on the difference between travel time in this line and overall expected travel time. Thus, every line has a chance
to be selected, no matter how bad its service is. Following this approach we have defined stochastic common-lines equilib-
rium and we have proved its existence under mild conditions.

We have proposed as well a stochastic extension of transit equilibrium (Cominetti and Correa, 2001; Cepeda et al., 2006).
The modeling approach assumes that passengers travel according to shortest hyperpaths to accomplish their origin–desti-
nation trips. Bus services are characterized by their observed frequency at the bus stops and their travel time to the next
stop. The formulation is an extension of the hyperpath model for the deterministic case. Our definition of stochastic transit
equilibrium is then a straightforward adaptation of the definition of transit equilibrium. We characterize the equilibrium as a
vector of feasible flows and expected travel times that must satisfy a set of simultaneous stochastic common-lines problems
coupled by flow conservation constraints.

The stochasticity is added in the modeling approach to capture realism on the perception of the passengers about travel
times associated with different bus services. Our premise is that passengers perception of travel times in different services
strongly influences their boarding decisions at the bus-stop. Travel times can show high variability for many reasons (shared
traffic, transfer operations, peak hour congestion, unexpected congestion, and so on), and our option to model this stochastic
is through a probability distribution for a passenger to decide boarding a bus, as a function of relative travel times (basically,
a probability that depends on the difference between the expected time for not taking that bus and the expected time if the
bus is in fact boarded).

When defining stochastic transit equilibrium we have incorporated two new expressions for expected waiting time and
network loads. In the definition of the common-lines problems we introduce new generic network load distributions that
now take into account not only effective frequency of the service but also the probability of boarding.

The resulting expressions are hard to be obtained analytically by studying the stochastic process occurring at the bus
stop; and are therefore supported, in the last part of the paper, through simulation of the embedded queueing process. In
the simulations we have included both effects: overcrowding and stochastic behavior at boarding. We found small differ-
ences between the simulation experiments and the expected results of the stochastic model (in terms of waiting time as well
as transit lines loads), validating the correctness of the proposed formulation. It is important to note that the effect of over-
crowding at bus stops (high congestion scenarios) is not significantly different from the deterministic approach which is
widely accepted in the literature (see details in Table 1). Thus, incorporating the stochastic behavior of passengers does
not affect the validity of our formulation of equilibrium.

Our model is quite general as it assumes a generic probability distribution, that can make unatractive the bad services,
still with a chance of being taken by few passengers, with no real knowledge of the actual performance of such a service.
This way to model the passenger behavior could also reflect the case of new passengers (not day-to-day users) starting a
Table 2
Comparison of deterministic and stochastic flows under low congestion.

Segment Cepeda h = 30 h = 10 h = 1 h ¼ 1
4 h ¼ 1

16

Express 84.3 84.1 84.0 83.4 82.8 81.0
Local-AB 25.7 25.9 26.0 26.6 27.2 30.0
Local-BC 25.7 25.9 26.0 26.6 27.2 30.0



Table 3
Comparison of deterministic and stochastic flows under high congestion.

Segment Cepeda h = 30 h = 10 h = 1 h ¼ 1
4 h ¼ 1

16

Express 260.5 260.5 260.5 260.5 260.5 260.8
Local-AB 99.5 99.5 99.5 99.5 99.5 99.2
Local-BC 99.5 99.5 99.5 99.5 99.5 99.2
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learning process about the real common-lines set for accomplish their travel needs. Then, the behavioral process associated
with boarding decisions due to travel time perception can becomes very disperse depending on the mix of passengers wait-
ing on certain stop.

An advantage of our formulation is that it is no longer necessary to solve dynamic programming problems to calculate
expected travel times, which are now obtained through functional forms. We were able to establish an algorithm to solve
the general stochastic transit equilibrium, which was applied to the sample network proposed by Cepeda et al. (2006);
the algorithm works well and generates consistent results when considering the stochastic nature of the decisions, in par-
ticular we were able to replicate the expected similarity in behavior (stochastic and deterministic) under high traffic conges-
tion conditions. The promising results motivates the implementation of the methodology on a real-size network case as the
next step of this research. Another further objective is to incorporate this formulation to an integrated scheme of stochastic
private and transit equilibrium (Baillon and Cominetti, 2008).
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Appendix A. Stationary distribution

In this appendix we develop the stationary distribution P = {pk}kP0 characterized by the balance equations obtained from
the solution of the system HTP = P(v + l) with h0,0 = l. The developments are based on the transition rates for the stochastic
model summarized in Section 3.

To synthesize the notation of the probability expressions in (10) and (11), hereafter, let us denote
Pðboard jjstay kÞ � PðS ¼ jjkÞ and Pðboard P jjstay kÞ � PðS P jjkÞ.

Notice that if p = 1 we recover the model by Cominetti and Correa (2001). Analytically
hk;0 ¼ l
XK

l¼k

ql; hk;k�j ¼ l½0þ 1 � qj� ¼ lqj:
The following step is to compute the transition probabilities to formulate the balance equations. For that, we have to explic-
itly find the transition rates hi,j. For this, let us define
hk;	 ¼
X
j–k

hk;j:
At this stage, what we need to calculate is k = hk,	 + hk,k.
The deterministic assignment can be modelled assuming p = 1; in such a case, we can write the following expressions. For

k = 0,
h0;	 ¼ v ; therefore h0;0 ¼ �v and then q0;0 ¼ 1þ 1
k
ð�vÞ;
and for k P 1
hk;	 þ hk;k ¼ l
XK

l¼k
ql|fflfflfflfflfflffl{zfflfflfflfflfflffl}

hk;0

þ l
Xk�1

j¼0
qj|fflfflfflfflfflffl{zfflfflfflfflfflffl}Pk�1

j¼0
hk;k�j

þ v|{z}
hk;kþ1

¼ lþ v :
Therefore k = l + v, and then
q0;0 ¼ 1þ 1
lþ v ð�vÞ ¼ v þ l� v

lþ v ¼ l
lþ v ;

qi;j ¼
hi;j

v þ l
; if ði; jÞ – ð0;0Þ:
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Let us now generalize the deterministic assignment model to include the stochastic behavior in passenger decisions, through
p < 1. In this case, for k = 0,
h0;	 ¼ v ; therefore h0;0 ¼ �v and then q0;0 ¼ 1þ 1
k
ð�vÞ:
On the other hand, for k – 0 the transition rates can be computed as follows
hk;	 þ hk;k ¼ lpk
XK

l¼k

ql þ l
Xk�1

j¼0

XK

l¼jþ1

qlPðS ¼ jjkÞ þ qjPðS P jjkÞ
" #

þ v: ðA:1Þ
Expression (A.1) synthesizes the generic case for k positive. Taking into account that this model incorporates capacity con-
straints on bus sizes, we have two options to compute such transition rates. Either k > K or 1 6 k 6 K
(j 6 k � 1 6 K � 1 6 K [ j + 1 6 K), where as stated before, K denotes the physical capacity of a bus. Then, considering first
that k > K, we have
hk;	 þ hk;k ¼ l
Xk�1

j¼0

XK

l¼jþ1

qlPðS ¼ jjkÞ þ qjPðS P jjkÞ
" #

þ v

¼ l
Xk�1

j¼0

XK

l¼jþ1
qlPðS ¼ jjkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 if jþ1>K

þ l
Xk�1

j¼0

qj|{z}
¼0 if j>K

PðS P jjkÞ þ v

¼ l
XK�1

j¼0

XK

l¼jþ1

qlPðS ¼ jjkÞ þ l
XK

j¼0

qjPðS P jjkÞ þ v

¼ l
XK

l¼1

Xl�1

j¼0

qlPðS ¼ jjkÞ þ l
XK

j¼0

qjPðS P jjkÞ þ v

¼ l
XK

l¼1

ql

Xl�1

j¼0

PðS ¼ jjkÞ þ PðS P ljkÞ
 !

þ lq0PðS P 0jkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼1

þ v

¼ l
XK

l¼1

qlðPðS < ljkÞ þ PðS P ljkÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

þ lq0 þ v

¼ v þ lð1� q0 þ q0Þ
¼ v þ l:
The other option for computing the transition rates in expression (A.1) is the case in which 1 6 k 6 K
(j 6 k � 1 6 K � 1 6 K [ j + 1 6 K). Then,
hk;	 þ hk;k ¼ v þ lpk
XK

l¼k

ql þ l
Xk�1

j¼0

XK

l¼jþ1

qlPðS ¼ jjkÞ þ l
Xk�1

j¼0

qjPðS P jjkÞ

¼ v þ lpk
XK

l¼k

ql þ l
XK

l¼1

Xminfl�1;k�1g

j¼0

qlPðS ¼ jjkÞ þ l
Xk�1

j¼0

qjPðS P jjkÞ

¼ v þ lpk
XK

l¼k

ql þ l
Xk�1

l¼1

Xl�1

j¼0

qlPðS ¼ jjkÞ þ l
XK

l¼k

Xk�1

j¼0

qlPðS ¼ jjkÞ þ l
Xk�1

l¼0

qlPðS P ljkÞ

¼ v þ lpk
XK

l¼k

ql þ l
Xk�1

l¼1

qlPðS < ljkÞ þ l
XK

l¼k

qlPðS < kjkÞ þ l
Xk�1

l¼0

qlPðS P ljkÞ

¼ v þ l
XK

l¼k

qlðpk þ PðS < kjkÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

þ l
Xk�1

l¼1

qlðPðS < ljkÞ þ PðS P ljkÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

þ lq0PðS P 0jkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼1

¼ v þ l
XK

l¼0

ql

¼ v þ l:
Therefore, we can say that independently of the capacity constraint given indirectly by K, when k > 0, k = l + v. Hence, the
transition probabilities are calculated as follows:
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q0;0 ¼ 1� v
lþ v ¼

v þ l� v
lþ v ¼ l

lþ v ;

qi;j ¼
hi;j

v þ l
; if ði; jÞ – ð0;0Þ
Then, the solution of the system PTP = P [ HTP = P(v + l) considering h0,0 = l, is as follows. For k = 0 we have:
ðv þ lÞp0 ¼
X1
k¼0

pkhk;0 ¼ lp0 þ
X1
k¼1

pklpk
XK

l¼k

ql;

vp0 ¼ l
X1
k¼1

pkpk
XK

l¼k

ql ¼ l
XK

l¼k

ql

Xl

k¼1

pkpk;

vp0 ¼ l
XK

l¼1

ql

Xl

k¼1

pkpk;

ðA:2Þ
and for k > 0
ðv þ lÞpk ¼
X1
k0¼0

pk0hk0 ;k ¼ pk�1v þ
X1
k0¼k

pk0hk0 ;k ¼ pk�1v þ
X1
j¼0

pkþjhkþj;k ¼ pk�1v þ
XK

j¼0

pkþjhkþj;k: ðA:3Þ
By manipulating terms and making explicit the h expressions, we get the following development
¼ pk�1v þ
XK

j¼0

pkþjl PðC > jÞPðS ¼ jjkþ jÞ þ PðC ¼ jÞPðS P jjkþ jÞ½ �

¼ pk�1v þ l
XK

j¼0

pkþj

XK

l¼jþ1

qlPðS ¼ jjkþ jÞ þ qjPðS P jjkþ jÞ
" #

¼ pk�1v þ l
XK

l¼1

ql

Xl�1

j¼0

pkþjPðS ¼ jjkþ jÞ þ
XK

j¼0

qjpkþjPðS P jjkþ jÞ
" #

¼ pk�1v þ l
XK

l¼1

ql

Xl�1

j¼0

pkþjPðS ¼ jjkþ jÞ þ pkþlPðS P ljkþ lÞ
" #

þ q0pk

¼ pk�1v þ l
XK

l¼1

ql

Xl

j¼0

pkþjPðS ¼ jjkþ jÞ þ pkþlPðS > ljkþ lÞ
" #

þ q0pk:
Thus, expression (A.3) becomes
ðv þ lÞpk ¼ pk�1v þ l
XK

l¼0

ql

Xl

j¼0

pkþjPðS ¼ jjkþ jÞ þ pkþlPðS > ljkþ lÞ
" #

: ðA:4Þ
Finally, Eqs. (A.2) and (A.4) define the following system
vp0 ¼ l
XK

l¼1

ql

Xl

k¼1

pkpk;

ðv þ lÞpk ¼ pk�1v þ l
XK

l¼0

ql

Xl

j¼0

pkþjPðS ¼ jjkþ jÞ þ pkþlPðS > ljkþ lÞ
" #

; 8k P 1:
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