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a b s t r a c t

We address the design problem of a reliable network. Previous work assumes that link failures are in-
dependent. We discuss the impact of dropping this assumption. We show that under a common-cause
failure model, dependencies between failures can affect the optimal design. We also provide an integer-
programming formulation to solve this problem. Furthermore, we discuss how the dependence between
the links that participate in the solution and those that do not can be handled. Other dependency models
are discussed as well.

© 2014 Elsevier B.V. All rights reserved.
1. Problem description

The topological design of reliable telecommunication networks
has been deeply studied throughout the last 30 years. The problem
can be stated as follows: given a set of nodes and a set of potential
links between these nodes, we must choose a subset of links to
install such that the total cost is minimized and the reliability is
maximized. For a gooddescription of this problemand thedifferent
types of reliability requirements, we refer to [12].

The reliability of a network can be defined in different ways.
The most common measure of reliability is K-connectivity. That
is, given a set K of terminal nodes, the reliability of the network
is the probability that there exists a path from every node in K
to every other node in K . When K includes all nodes in the
network then this measure is called the all-terminal reliability and
when K is a specific pair of nodes, it is called the source-terminal
reliability (or s-t reliability). To make the computation of reliability
affordable, several simplifications over the failures in a network are
made. Themost common simplifications are as follows: (a) the link
failures are independent; (b) the nodes are perfectly reliable; and
(c) no repair is allowed. Note that even under these assumptions,
to compute the reliability of a given network is a #P-hard problem
[3,20].
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Formally, let G = (N, E) be a graph with node set N and link
set E. Let U be a random binary vector taking values in {0, 1}E , rep-
resenting which links are operational. Given U , let EU be the set of
all links that are operational; then, the observed network is given
by the graph GU = (N, EU). The K-reliability of G is defined as the
probability that GU is K-connected.

We study the following problem: given a cost ce for each e ∈ E
and a budget B, we want to select a subset of links F ⊆ E of total
cost less than or equal to the budget, such that the reliability of the
selected subnetwork is maximized:
max
F⊆E

P((N, FU) is K-connected)
e∈F

ce ≤ B.

Due to the difficulty associated with the computation of the re-
liability of a network, the only known methods to exactly solve
this problemare based in the enumeration of the possible solutions
[2,9]. This is possible only on small-sized networks and for particu-
lar cases, such aswhen all links have the sameprobability of failure.
Hence, authors have focused on different heuristics and approxi-
mation techniques. For example, using Tabu Search [11], Simulated
Annealing [19], Genetic algorithms [6,5] orNeural Networks [12,1].
These methods give approximate solutions without any guarantee
of convergence to optimality. A recent approach, proposed in [22],
employs a sample of failure event scenarios to determine the op-
timal topology. This technique, called the sample average approxi-
mation (SAA), converges to an optimal solution when the number
of samples is sufficiently large.
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However, recent studies question the neglect of the dependence
between failures. In [8], authors analyze real data from a Nor-
wegian academic network, showing that neighboring links show
significant correlation. In particular, for the design of reliable net-
works, the impact of dependent failures on the resulting reliability
is analyzed in [13], showing that the assumptionof failure indepen-
dence can produce an underestimation of the real reliability. There
are several approaches to model the failure dependence between
components, including causal failure, cascade failure and common-
cause failure. For a discussion of the tractability and scalability of
these different models, we refer the reader to [21].

In this paper, we study the topological optimization problem
under the best-established common-cause failure model [15]. In
Section 2,wepresent theMarshall–Olkin copulamodel,which sup-
ports common-cause failure dependency. In Section 3, we present
an SAA model to solve the problem, and in Section 4, we present
some extensions of the previous models to consider other depen-
dent failure models. Finally, we present a computational example
in Section 5, showing that ignoring correlation can lead to subop-
timal solutions.

2. The Marshall–Olkin copula model for common-cause fail-
ures

Common-cause failures are a subset of dependent events in
which two or more component fault states exist at the same time
and are either direct results or a shared cause [17]. These failures
arise naturally in several contexts, for example, in an overlay (vir-
tual) network that is connected through an underlying physical
network, so a failure in the physical layer could affect several com-
ponents of the overlay network. Another example is a network in
which the components share equipment that is essential for their
function. The Marshall–Olkin (MO) copula introduced in [16] is
one of the best-established models for common-cause failures. In
this model, events cause one or more components to fail simulta-
neously, but the lifetime of each link remains exponentially dis-
tributed. This model was used in [4] for evaluating the reliability
of a network using an importance sampling technique to generate
samples of correlated failures.

Formally, let G = (N, E) be a network. At time zero, we assume
that all links are operational. As time passes, links start to fail
(alone or simultaneously). Because no repair is allowed, fewer links
operate over time. For each link,we candefine the lifetimeVe that is
the instant atwhich link e fails. LetP E

0 be a collection of non-empty
subsets of E and let (WD)D∈P E

0
be a family of independent positive

random variables. The time WD represents the instant in which a
failure that affects all links in D occurs. Therefore, the lifetime of
link e is the first time that a set D containing e fails. That is,

Ve = min
D:e∈D

{WD}.

When WD’s are exponential random variables, then this cou-
pling is known as the MO copula. Note that the marginal distribu-
tion of the lifetime Ve is also exponential for all e. Let Ue(t) be the
state of link e at time t; hence, we have Ue(t) = I(Ve≤t). Let U(t) =

(Ue(t))e∈E ; then the graph GU(t) = (V , EU(t)) is the observed net-
work at time t . Becausewe are interested in a staticmodel, we take
a snapshot of the network at time 1 and evaluate the reliability at
that instant (this can also correspond to a dynamic model with a
fixed mission time). We fix the status of each link Ue := Ue(1).

Note that this is a natural extension of the independent failure
model, settingP E

0 as the collection of singleton sets, andVe as expo-
nential randomvariables of parameter log(1−pe). In this particular
case, we have independent failure probabilities between links, and
at time 1, the failure probability is pe for link e. We can also recover
the model in which the nodes and links fail independently, adding
to the previous model the collection of sets {Dn : n ∈ N} such that
Dn is the set of all links with n as an end node. In this case, if all
nodes fail independently with probability q and the links fail inde-
pendently with probability p, then the marginal probability failure
for each link is (1− p)(1− q)2, and the node failures induce a cor-
relation between adjacent links of q(1−p)

1−(1−p)(1−q)2
.

3. An integer programming model using sample average
approximations

In this section, we present an integer programming model that
considers the dependencies between links, given by anMO copula.
Thismodel is related to the ideas of [22],which is based on a sample
average approximation (SAA) of the probability that the network is
K-connected.

SAA is a popular technique for approximating the stochastic ob-
jective function. Some of the first applications of this technique ap-
peared in [10], and the approach was empirically studied in [14].
Recalling that the probability of an event is equal to the expected
value of the indicator function of the event, the basic idea is to ap-
proximate the expected value by its sampled average. That is, we
sample a set of scenarios S, andwe approximate the objective func-
tion by
P ((N, Fx) is K-connected) = E


I(N,F) is K-connected


≈

1
|S|


s∈S

I(N,F sx ) is K-connected,

where F s
x is the subgraph obtained after removing from Fx the failed

links in scenario s.
To formulate an integer programming model that uses the pre-

vious approximation, we define a binary variable ws that indicates
the event that the graph (N, F s

x) isK-connected (or not) under sce-
nario s. A K-cut is a subset M ⊆ N such that K ∩ M ≠ ∅ and
K \ M ≠ ∅. Recall that a graph G = (N, E) is K-connected if and
only if for every K-cutM the cut-set induced byM , δ(M) = {uv ∈

E : u ∈ M, v ∉ M}, is not empty. Finally, let {W s
D : D ∈ P E

0 , s ∈ S}
be a sampling of the MO copula. Then, we solve the following inte-
ger programming problem:

max

s∈S

zs (1)
e∈E

cexe ≤ B (2)
e∈δ(M)

us
e ≥ zs ∀M K-cut, ∀s ∈ S (3)

us
e ≤ xe ∀e ∈ E, ∀s ∈ S (4)

us
e ≤ 0 ∀e ∈ D, ∀s ∈ S such thatW s

D < 1 (5)
xe ∈ {0, 1} ∀e ∈ E
zs ∈ {0, 1} ∀s ∈ S
us
e ∈ {0, 1} ∀s ∈ S, ∀e ∈ E.

Binary variables xe for each link e ∈ E determine the resulting
network, where constraint (2) bounds the total cost of these links.
Variables us

e represent whether or not link e is operative under sce-
nario s. To do so, constraints (4) and (5) force us

e = 0 in the case that
link e is not chosen (xe = 0), or whether one of the copula associ-
ated to link e indicates that this link fails in scenario s (W s

D < 1).
Finally, constraint (3) verifies whether the resulting network is
K-connected under scenario s or not. To verify this, note that
binary variables zs can take a value of 1 (which is desired by the ob-
jective function), only if for every K-cut there is at least one link
operative in scenario s. Note that it is possible to eliminate vari-
ables us

e by replacing constraints (3)–(5) by


e∈δ(M) I(W s
D≥1)xe ≥ zs,

obtaining a similar model to the one presented in [22]. However,
we adhere to the model including explicitly the us

e variables be-
causewewill discuss some extensions inwhich these variables are
required in the model.
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It should be noted that, in this IP formulation, dependence be-
tween the chosen and unchosen links in the solution still exists,
which is reasonable for many cases. Nevertheless, there are other
cases inwhich dependencewith unchosen links should be ignored.
An example case is when common-cause failures arise from the
interactions between two components. Therefore, if one of these
components is not constructed, this dependence should be ig-
nored. In an MO copula model in which dependence is observed
only between a pair of links {e, e′

}, the failure event {W{e,e′} < 1}
for this pair will be ignored if one link has not been constructed.
This behavior can be added to the IP formulation by replacing con-
straint (5) for D = {e, e′

} by

us
e + xe′ ≤ 1 ∀e, e′

∈ E, e ≠ e′, ∀s ∈ S such that W s
{e,e′} < 1. (6)

These cover-inequalities can be generalized for sets D of arbitrary
sizes, by

us
e +


e′∈D\{e}

xe′ ≤ |D| − 1 ∀e ∈ D, ∀s ∈ S such thatW s
D < 1. (7)

Even if these formulations result in an exponentially sized
model, they can be implemented efficiently and be used to solve
mid-sized instances of the problem. For example, we can relax the
integrality condition of variables us

e and zs, obtaining a problem
with only |E| binary variables. Additionally, constraint (3) can be
added in a cutting-plane scheme, where the separation problem
is to find, for a given scenario s, a K-cut of G with edge-weights
equal to the incumbent solution us

e, such that the cut-weight is
less than the value of zs. This can be done solving a min K-cut,
which can be done inO(|N| |E|+|N|

2 log |N|) time [23]. Moreover,
this separation problem can be applied only when an integer
solution has been found in the branch-and-bound tree, by solving
a breadth-first search over the incumbent solution, which can be
done in linear time. Additionally, complex constraints such as (6)
and (7) appear in small numbers because these events are rare.
Code that incorporates these features can be downloaded from
http://emoreno.uai.cl/code/saa-reliability/ for testing purposes.
Note that in this model it is also possible to consider lifetimes with
distributions different from the exponential distribution.

4. Extension to the causal-failure model

In this section, we discuss how to extend the previous model to
incorporate other kinds of dependency models between links, in
particular, the causal failure model. Causal failures between two
components arise when the failure of a first component affects,
starting from thatmoment on, the chances that the surviving com-
ponent fails. Many approaches are available to formalize this con-
cept, such as the one discussed in [15], although there is no con-
sensus on which model is the best. As suggested in the previous
work, Freund’s model for dependence can capture this effect. In
this model, we have that, while link e is operational, link e′ fails
with rate λe′ . After link e fails, the failure rate of the surviving link
e′ increases to λe′ + 1λe⇒e′ . For details on the joint distribution
and properties of the model, see [7]. This model can be easily sim-
ulated with three independent exponential random variables We,
We′ and We⇒e′ with rates λe, λe′ and 1λe⇒e′ , respectively. Hence,
the lifetime of link e is

Ve′ = min{We′ ,We + We⇒e′}.

We can extend the IP formulation presented in the previous
section to represent this causal-failure model. As in the previous
section, if the causal effect of link e on link e′ is to be considered
even when e is not included in the network, then we add the
following constraint to the IP formulation:

us
e′ ≤ 0 ifW s

e + W s
e⇒e′ < 1.
Table 1
Average objective values and Wilson’s 95% confidence interval for the reliability
of the solutions obtained by the IP model using original and modified copula
parameters.

Instance Independent Copula
Object. Estimated Object. Estimated

I0 0.90542 0.87381 ± 0.00207 0.87591 0.87381 ± 0.00207
I1 0.90542 0.86473 ± 0.00207 0.87569 0.87776 ± 0.00206
I2 0.90542 0.85401 ± 0.00208 0.87343 0.87407 ± 0.00206
I3 0.90542 0.84588 ± 0.00209 0.87320 0.87282 ± 0.00207
I4 0.90542 0.79534 ± 0.00211 0.83106 0.83083 ± 0.00210

If causal failure should be ignoredwhen link e is not in the solution,
then we add this other constraint to the IP formulation:

us
e′ ≤ 1 − xe ifWe + W s

e⇒e′ < 1.

Note that these pairwise constraints can be added for several
pairs, allowing the incorporation of complicated one-to-many
cause failures or failures that are similar in the same way.

5. Computational example

In this section, we present a computational implementation of
the IP model over a medium-sized network. We also show that ig-
noring the dependence between link failures can lead to subopti-
mal solutions of our network design problem.

We tested our model over the Italian WDM backbone network,
extracted from [18], where themarginal failure probabilities pe are
computed as a function of the length of each link. Inspired by [8],
we introduced a correlation using the distance def between the
midpoint of a pair of links e and f , given by ρef = exp(−θdef )
rounded to the first decimal and using θ = 2. This formula obtains
correlations up to 0.5. In order to compute parameters for the MO
copulas λs that support these correlations and marginal probabili-
ties of failures, we solved the following system of linear equations
D⊇{e}

λD = − log(1 − pe) ∀e ∈ E


D⊇{e,f }

λD = log

1 + ρef


pepf

(1 − pe)(1 − pf )


∀e, f ∈ E, e ≠ f

λD ≥ 0 ∀D ⊆ N,

obtaining a set of 114 copulas with positive parameters contain-
ing between 1 and 3 links. We set the cost of each link equal to its
length in kilometers and the budget to B = 3500 km s. We ran our
IP formulation assuming independence between failures and using
the MO copulas computed previously, with 3000 samples for each
case. Finally, we repeated the execution of these models 10 times.
The average running time of each instance was 29.3 min.

Different samples could lead to different solutions, but themost
common solution obtained (and the one with best objective) co-
incides for both models, and it is presented in Fig. 1(a). We also
present in Table 1 (instance I0) the average of the obtained objec-
tive function of the model, and a 95% Wilson’s confidence interval
of reliability of the solution, computed using 1 million samples of
the MO copula. Note that even if both models obtain the same so-
lution, the obtained objectives differ considerably. Moreover, the
model that only considers the marginal failure probabilities over-
estimates the reliability of the network, but the model using the
MO copulas obtains objectives very close to the estimated reliabil-
ity of the resulting network.

In order to show that the dependencies can affect the final
topology, we construct new instances by sequentially modifying
correlations. First, we construct instance I1 from instance I0 by in-
creasing the correlation between links (7, 10) and (9, 11) to the

http://emoreno.uai.cl/code/saa-reliability/
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(a) Instance I0. (b) Instance I1. (c) Instances I2, I3 and I4.

Fig. 1. Optimal solutions obtained by the IP model for the different instances.
maximum allowable, keeping the same marginal failure probabil-
ities for all links. We repeat this procedure increasing correlation
between links (0, 2) and (0, 3), links (6, 8) and (3, 7), and links
(12, 14) and (14, 18). We denote these instances as I2, I3 and I4,
respectively. Note that, for all instances, the model assuming in-
dependence between failures is exactly the same than before, ob-
taining the same solution and objective. Solutions obtained by our
model are presented in Fig. 1(b)–(c). As we can see, the new solu-
tion of I1 avoids using link (7, 10) in order to avoid this increased
correlation, and it replaces two other links to keep the three-cycles
structure of the solution within budget. The same behavior is ob-
served for I2. In Table 1, we also present the obtained objective and
estimated reliability of the solution obtained by eachmodel, under
the modified MO copula parameters. As we can see, the model as-
suming independence between failures obtains the same solution
as before, but its actual reliability again differs considerably from
the average objective value. On the other hand, the model using
MO copulas obtains better solutions (up to 5% more reliable), with
objective values very close to the estimated reliability for all in-
stances.

This example shows that if dependency among failures is ne-
glected, then it could lead to suboptimal solutions. Thus, in order
to attain a larger reliability, we may choose less reliable routes if
doing so avoids significant correlation.

6. Conclusions

Reliable network design models in the past literature have
ignored the dependency between link failures, mainly due to
the difficulty that dependency represents when solving problems.
However, as shown in this work, dependency between failures can
affect the optimal design, and ignoring this dependency can lead
to suboptimal solutions. This is a key aspect of the design because
empirical evidence shows that correlation between link failures
exists and it is significant. Considering this point, we introduce
an integer programming model in which this type of dependency
between failures can be addressed using simulation, allowing us
to solve this problem efficiently for a variety of failure dependency
models. To implement this IP model there is still a necessary step:
to choose and to calibrate a correct failure model. This crucial
decision, that should be addressed before using our IP model,
depends in the specific problem that need to be analyzed and can
be a challenging task by itself.
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