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Abstract

Open-pit mining production planning is a risky problem: operation costs are con-
siderable, many parameters are inherently subject to uncertainty and, moreover,
the mining operation can only be done once. In this work we address uncertainty in
the ore-grade, where we only assume the availability of an i.i.d. sample of the joint
distribution of ore-grade in the blocks of the mining site. We consider an open-pit
mining problem involving extraction and processing decisions under capacity con-
straints. We apply and compare the risk-hedging performance of three approaches
for optimization under uncertainty: Value-at-Risk, Conditional Value-at-Risk and
a proposed robust optimization approach. The latter is shown to have desirable
risk-averse properties. Computational results on one small size vein-type mine are
shown.
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1 Introduction

Uncertainty plays a major role in open-pit mining production planning. A
crucial parameter subject to uncertainty is the ore-grade of each block in the
ore field: high costs of prospective drillings makes necessary to limit them
and rely on interpolations with geostatistical techniques. Moreover, produc-
tion planning problems are essentially one-shot problems: the exploitation of
the ore body is done only once. For all this, a pure maximization of expected
profits is questionable. Previous works on this subject have considered simu-
lations, maximization of expected value and chance constrained optimization
(see [4]).

In this work we study the effect of ore-grade uncertainty on the final profit
of the mining operation. We assume that the ore-grades can be accessed
by i.i.d. samples, in this way we make independent the risk analysis from
the geostatistical technique that models the joint ore-grade distribution. We
consider a model of open-pit planning under capacity constraints in which,
on a single-period time horizon, the decision consists on which blocks of the
mine are going to be extracted, and among the extracted, which ones are
going to be processed. These simplifications are for the sake of simplicity and
understanding, but the approach is readily extendible to multi-process and
multi-period.

The rest of this text is organized as follows. §2 presents the extraction and
processing planning problem we consider. §3 presents three common models
for risk/robust optimization.§4 presents some performance comparisons for
these models in a vein-type mine. Finally, §5 presents the main conclusions
and remarks of our work.

2 Problem description

We consider a single-period horizon production planning problem, and for the
time being we will assume that the value of all parameters is known and is not
subject to uncertainty. We use the traditional block model for open-pit mining,
and consider the following IP formulation. Define B as the set of blocks in the
ore-field and P ⊆ B × B the set of precedence constraints for extraction; that
is, (a, b) ∈ P iff to extract b one must extract a. Variables are xp, xe ∈ {0, 1}B,
where xe

b = 1 iff block b is extracted, and xp
b = 1 iff block b is processed. Only

extracted blocks can be processed. Each block has a given tonnage, and there
is a maximum extraction tonnage and a maximum processing tonnage. The
profit function is Πρ(x

e, xp) = (w · ρ)′xp − (cp)′xp − (ce)′xe, where ce, cp ∈ R
B
+
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are the extraction and processing costs, ρ ∈ R
B
+ is the ore grade, and w > 0 the

unitary value of the processed ore. Defining X as the set of feasible production
plans, the problem is: max Πρ(x

e, xp) s.t. (xe, xp) ∈ X. Note that Πρ(x
e, xp)

is linear in (xe, xp) for all ρ, and that X does not depend on ρ.

3 Assessing uncertainty

From this point onward, we will assume that the vector ρ̃ ∈ R
B
+ of ore-grades

is a joint random vector following some (possibly unknown) stochastic distri-
bution, but that we can obtain i.i.d. samples of it. Note however that this
uncertainty only appears in the objective function.

3.1 Minimization of Value-at-Risk

Our first model is minimization of Value-at-Risk (VaR) of the profit. For a
general random variable L representing a loss (then −L is a profit), its VaR
with risk level ε ∈ [0, 1) is defined as VaRε(L) := min {ζ : P(L ≤ ζ) ≥ 1− ε}.
Hence, t = VaRε(L) implies that, with a confidence level of (1− ε), losses will
not exceed the threshold t; therefore lower values of t are more desirable.

For every feasible production plan (xe, xp) ∈ X the profit of the plan,
Πρ̃(x

e, xp), is a real random variable. Given a desired risk level ε ∈ [0, 1), the
minimization of VaR model consists of

min{ ζ : P(−Πρ̃(x
e, xp) ≤ ζ) ≥ 1− ε, (xe, xp) ∈ X }(1)

Computability issues and non-convexity of the chance constraint makes
this model, as stated, untractable. However, using an i.i.d. sample {ρi}Ni=1 of
ρ̃ we can approximate P with the in-sample frequentist probability, obtaining
a common MILP formulation [8]. This approach, also known as Sample Av-
erage Approximation (SAA) of a chance constraint, is rather popular and has
been widely studied (see e.g. [6]). Remarkably, under mild conditions, as the
sample size grows, the approximated problem’s objective value and feasible
set converges to its respective counterparts of the real problem [6].

3.2 Minimization of Conditional Value-at-Risk

The second used model is minimization of Conditional Value-at-Risk (CVaR)
of the profit. Given a desired risk level ε ∈ (0, 1], if the atom-less random vari-
able L represents a loss (then −L a profit), its CVaR with risk level ε is defined
as CVaRε(L) := E [L|L ≥ VaRε(L)] (see [7] for details). The minimization of
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CVaRε of the profits consists on

min{ ζ +
1

ε
E
[
(−Πρ̃(x

e, xp)− ζ)+
]

: (xe, xp) ∈ X, ζ ∈ R }(2)

Unlike VaR, CVaR is a coherent risk measure in the sense of [1]. Mini-
mization of CVaR is therefore a risk-averse optimization approach. Note also
that the model is equivalent to maximize expected profits when ε = 1.

As before, we use an i.i.d. sample of ρ̃ to approximate E by the in-sample
average, i.e. we use the SAA of the expected value. SAA approximation of
expected value has also been widely studied (see [5]) and under mild conditions
there is convergence of the approximated problem to the real one (see [8]).

3.3 A Robust optimization approach

We propose a robust optimization model based on the availability of an i.i.d. sam-
ple {ρi}Ni=1 ∈ R

B
+ of the joint ore-grades. For a desired risk-level ε ∈ [0, 1]

we consider the set Uε := ρ̄ + (1 − ε)
(
conv(

{
ρ1, . . . , ρN

}
)− ρ̄

)
, where ρ̄ :=∑N

i=1 ρ
i/N . Intuitively, as ε grows from 0 to 1, the convex hull of the sample

colapses to the mean ore-grade. The proposed approach, which we denote
Modulated Convex-Hull model (MCH), consists in

max
(xe, xp)∈X

min
ρ ∈ Uε

Πρ(x
e, xp)(3)

An equivalent MILP formulation is obtained using the vertices of Uε and
affine-linearity of Πρ in ρ. Note that we are moving between maximizing worst
in-sample profit (if ε = 0) and maximizing the in-sample mean profit (if ε = 1).
This enables the decision maker to choose the desired balance between con-
servativeness and the traditional stochastic approach of maximizing expected
profits. Finally, we present a close relationship between the proposed model,
minimization of CVaR and risk-averse optimization.

Proposition 3.1 (i) Let ε ∈ [0, 1], and let (Ω,F ,PN) be a finite, equiproba-
ble probability space of cardinal N . For all loss function Z ∈ L∞(Ω,F ,PN)
define

με(Z) := ε CVaR1(Z) + (1− ε) CVaR1/N(Z)

Then με is a coherent risk measure. Moreover, it is law-invariant and
comonotonic, in the sense of [2].

(ii) Given an i.i.d. sample ρ1, . . . , ρN defining an equiprobable space, the pro-
posed approach (3) is equivalent to min

(xe, xp)∈X
με (Πρ(x

e, xp))
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4 Computational results

We apply the three approaches on a small size (approx. 16000 blocks of 10m×
10m×10m) vein type mine, for which an i.i.d. sample of 1000 joint ore-grades
obtained using [3]. We take a random sample of N < 1000 ore-grades and
solve the three models for several risk levels ε, obtaining thus several plans.
For each plan, we obtain its in-sample profits via evaluating its profit on each
of the N in-sample ore-grades; analogously, full-sample profits are obtained
when evaluating the profit of the plan on each of the 1000 ore-grades available.
Histograms of in- and full-sample profits are shown in Figures 1 and 2. For
the sake of comparability, all figures have the same bound on x- and y-axis,
and mean and std. deviation are shown over each curve.
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Fig. 1. Profits histograms obtained using a size N = 100 sample
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Fig. 2. Profits histograms obtained using a size N = 180 sample

5 Conclusions and remarks

• VaR model shows riskier results than maximizing expected in-sample
profits, since the former allocates higher probability in the worst profits
than the latter does. In consequence, minimizing VaR does not show
appropriate under a risk-averse perspective.

• CVaR and the proposed MCH model have attractive theoretical proper-
ties under i.i.d. sampling; namely, coherence, law-invariance and comono-
tonicity (see [2]). In practice, CVaR and MCH models show a conserva-
tive performance, since worst profits are attained with lower probability
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than when maximizing mean in-sample profits (see Figure 2). However,
this is done at the expense of having lower probability of attaining high
profits.

• Theoretically, modeling uncertainty using i.i.d. sampling shows sound: for
VaR and CVaR models convergence as the sample size grows is assured
under mild conditions. In practice, however, the in-sample behaviour
might be lost once evaluated in the true distribution, as shown in Figure 1.

• Future work includes statistical validation, for each model, of the in-
sample solution as a solution of their respective real stochastic models,
for example using [8, Chap. 5]. Another area of future work is setting the
processing decision as a recourse, or second-stage, variable.
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