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Abstract

Given a digraph (directed graph) with a labeling on its arcs, we study the problem of finding the Eulerian circuit of
lexicographically minimum label. We prove that this problem is NP-complete in general, but if the labelling is locally injective (arcs
going out from each vertex have different labels), we prove that it is solvable in linear time by giving an algorithm that constructs
this circuit. When this algorithm is applied to a de Bruijn graph, it obtains the de Bruijn sequences with lexicographically minimum
label.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this work we consider the problem of finding the Eulerian circuit of minimum lexicographical label. Note that
in order to have a well-defined problem, we need to fix a starting vertex, so as to define an order in which vertices are
visited. First of all, we study the complexity of this problem, analysing the following decision problem:

MIN-LEX-EULERIAN-CIRCUIT

Instance: An Eulerian digraph G, a labeling l : A(G)→ Σ of
its arcs, a starting vertex r and a word X ∈ Σ |A(G)|.
Question: Is there an Eulerian circuit T starting at r such that
l(T ) ≤ X?

We prove the hardness of the problem in Theorem 1.

Theorem 1. MIN-LEX-EULERIAN-CIRCUIT is NP-complete.
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A labelling is locally injective if arcs going out from a given vertex have different labels. In Theorem 2 we prove
that for locally injective labelling the problem becomes polynomially solvable.

Theorem 2. MIN-LEX-EULERIAN-CIRCUIT is polynomially solvable for locally injective labelling.

1.1. Definitions

Let G be a digraph. For an arc e = (u, v) we denote by u = t (e) and v = h(e) its tail and its head vertices,
respectively.

A trail is a sequence T = e1e2 . . . ek of arcs e j such that t (ei ) = h(ei−1) for every i = 1, 2, . . . , k and all arcs
are distinct. Let ei be an arc in the trail T . We denote by T ei the subtrail e1 . . . ei , by ei T the subtrail ei . . . ek and by
ei T e j the subtrail ei . . . e j for i ≤ j . If the tail of e1 is equal to the head of ek then T is a closed trail or circuit. A
circuit is an Eulerian circuit if arcs of T are all arcs of G. An Eulerian digraph is a digraph with an Eulerian circuit.

Let G be a Eulerian digraph and let r be one of its vertices. A subdigraph D of G is called a prebranching with
root r if each vertex of G, different from r , has out-degree 1 in D. When the underlying graph of D is connected then,
D is called a branching with root r . In this case, the underlying graph is a tree and for each vertex v in G there is
exactly one directed path in D from v to r .

A vertex v is exhausted by a trail T if the trail uses all arcs having the vertex v as head or tail.
Let r be a vertex of G and let D be a prebranching of G. A trail T starting at r disregards D if for each arc

e = (v, u) of D, either the vertex v is exhausted by the subtrail T e or the arc e is not used in T . Intuitively, an arc
(v, u) in D is used by T if and only if all other arcs leaving v have already been used by T .

In [17,16] it is proved a correspondence between Eulerian circuits in a digraph and its branchings. This result is
known as the BEST theorem, an acronym for author’s names.

We recast this correspondence in the following manner:

Theorem 3 (BEST). Let G be an Eulerian digraph and let r be a vertex of G. Let D be a prebranching of G rooted
at r . Let T be a maximal trail starting at r which disregards D. Then T is an Eulerian circuit if and only if D is a
branching of G with root r .

Proof. If T is an Eulerian circuit which disregards D then, for each vertex v different from r , the last incident arc
visited by T is that in D. As T is Eulerian, the underlying graph of D must be a tree. Since T ends at r , we conclude
that D is a branching of G rooted at r . This proves the forward implication.

Conversely, let us assume that T does not exhaust all vertices of G and let us choose v as a non-exhausted vertex
closest to r in D. As T is a maximal trail starting at r it must stops at r exhausting r , so that v 6= r . As T does
not exhaust v, there is an arc (v, u) in D not used by T . Hence, u is closer than v to r in T and it is not exhausted,
contradicting the choice of v. �

Let l : A(G) → Σ be a labelling of arcs of G over an alphabet Σ . The label of T , l(T ), is the word
l(e1) . . . l(ek) ∈ Σ ∗. When arcs going out from the same vertex have different labels we say that the labelling is
locally injective.

Theorem 3 allows us to count the number of Eulerian circuits in a digraph, which grows exponentially fast in terms
of the number of vertices. Hence, from the computational complexity point of view, to check any property of Eulerian
circuits by enumerative methods is inefficient.

In this work we study the problem of finding the Eulerian circuit of the digraph whose label is lexicographically
minimum among labels of all Eulerian circuits. A first approach to solve this problem is to construct a trail by using a
greedy strategy: Starting at a given vertex r , follow the unvisited arc (if it exists) of minimum label. A trail constructed
by this strategy is called a alphabetical trail starting at r .

Let G be a labelled Eulerian digraph and let r be a vertex of G. A prebranching D of G rooted at r is maximal if
for each vertex v distinct from r , the arc leaving v in D has a maximum label among all arcs leaving v in G.

Note that an alphabetic trail starting at r is a maximal trail disregarding a prebranching of G rooted at r which is
maximal. Although not always there is an alphabetical trail which is an Eulerian circuit (see Fig. 1), from Theorem 3
we can obtain necessary and sufficient condition on the labelling to guarantee that this happens.



5300 M. Matamala, E. Moreno / Discrete Mathematics 309 (2009) 5298–5304

Fig. 1. Example of the alphabetical trail starting at r (of label 000100) which is not an Eulerian circuit because the maximal prebranching (bold
arcs) is not a branching.

Corollary 4. Let G be a labelled Eulerian digraph and let r be a vertex a G. There is an alphabetical trail T starting
at r which is an Eulerian circuit if and only if there is a maximal prebranching of G rooted at r which is a branching
of G.

It is worth noting that if the labelling of G is locally injective, then there is only one maximal prebranching of G
rooted at r , and there is only one alphabetical trail starting at r .

1.2. Motivation

Our inspiration for studying the complexity of this problem comes from the notion of de Bruijn sequences. A de
Bruijn sequence of span n for an alphabet Σ is a periodic sequence such that every n-tuple occurs exactly once. Its
first known description appears as a Sanskrit word yamátárájabhánasalagám which was a memory aid for Indian
drummers, where accented/unaccented syllables represent long/short beats, so all possible triplets of short and long
beats are included in the word. De Bruijn sequences are also known as “shift register sequences” and were originally
studied by N.G. De Bruijn for the binary alphabet [3]. These sequences have many different applications, such as
memory wheels in computers and other technological devices, network models, DNA algorithms, pseudo-random
number generation, modern public-key cryptographic schemes, to mention a few (see [15,1,2]). Historically, de Bruijn
sequences were studied in an arbitrary alphabet considering the language of all n-tuples. There are a large number of
de Bruijn sequences in this case, but only a few can be generated efficiently, see [5] for a survey about this subject.
In 1978, Fredricksen and Maiorana [6] give an algorithm to generate a de Bruijn sequence of span n based in the
Lyndon words of the language, which happens to be the minimum one in the lexicographic order, and this algorithm
was proved to be efficient [13].

An interesting framework to study de Bruijn sequences is graph theory: For a given integer n, a de Bruijn sequence
of span n can be constructed as labels of an Eulerian circuit in a corresponding digraph, called de Bruijn graph of span
n. In these graphs, vertices are words of length n − 1, and there is an arc from u to v whenever the suffix of length
n − 2 of u and the prefix of length n − 2 of v coincide. The arc (u, v) is labelled with the last letter of v. This graph
was first defined implicitly in 1894 by Flye Saint-Marie [4] and it was explicitly detailed in 1946 by de Bruijn [3] and
Good [8] independently. Note that this labelling is locally injective, since there are no multiple arcs.

In [14], the notion of de Bruijn sequences was extended to a set of n-tuples without a given forbidden word.
A further generalization to arbitrary set of n-tuples, called dictionary, was proposed by one of the authors. This
generalization was carried out by considering strongly connected subgraphs of the de Bruijn graph, induced by words
in the dictionary. This idea was first used in [12]. In this framework, the existence of de Bruijn sequences for words
in the dictionary is characterized by the existence of Eulerian circuits in the corresponding digraph [9].

Based on Corollary 4, we know that the alphabetical trail is an Eulerian circuit if there are no cycles in the maximal
prebranching. On one hand, in the unrestricted case (all words are in the dictionary) the maximal prebranching is a
branching and hence the alphabetical trail gives the lexicographically minimum Eulerian circuit. On the other hand,
for general dictionary the maximal prebranching could have cycles. In [10] we characterize those dictionaries where
the maximal prebranching is a branching.

When the alphabetical trail is not an Eulerian circuit, some vertices are not exhausted. If we restart an alphabetical
trail, restricted to unvisited arcs, at the last non-exhausted vertex and we merge both trails, we obtain a longer trail
that exhausts more vertices. By iterating this process we obtain a linear time algorithm computing an Eulerian circuit.
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We shall prove in Theorem 8 that this algorithm constructs a minimum lexicographically Eulerian circuit, not only
for the de Bruijn graphs, but also for any Eulerian digraph with a locally injective labelling, proving Theorem 2. A
preliminary version of these results appears in [11].

2. Linear time algorithm for general digraphs

In this section, we prove our main result: the problem MIN-LEX-EULERIAN-CIRCUIT is polynomially solvable
for all Eulerian digraphs having a locally injective labelling.

For a trail T = e1 . . . ek over G, we define a failure of T as a pair (i, j) with i < j , t (ei ) = t (e j ), l(ei ) > l(e j )

and such that if t (es) = t (ei ) for s ∈ {1, . . . , i − 1}, then l(es) < l(e j ). The vertex t (ei ) is called the failure vertex of
(i, j) and the subtrail ei T e j−1 is called the failure subtrail of (i, j).

Note that an alphabetical trail has no failures.
In order to construct the Eulerian trail of minimum label O , we present an inductive decomposition of O into

subtrails O i . The idea of our algorithm will be to reconstruct O from these subtrails.
First of all, we study the position and properties of failures in O: For a subset of arcs A′ we denote by t (A′) the set

t (A′) := {t (e) : e ∈ A′}.

Lemma 5. Let O = e1, . . . , ep be the Eulerian trail of minimum label. If (i, j) is a failure, then

t (e j+1 O) ∩ t (ei Oe j ) = ∅.

Proof. By sake of contradiction, let ek and es be arcs with k ≥ j+1 and i ≤ s ≤ j such that t (ek) = t (es). Depending
on the value of s we construct an Eulerian trail Õ starting with Oei−1 and followed by the edge e j . As l(e j ) < l(ei ),
this will contradict the minimality of O .

If s = i or s = j then

Õ = (Oei−1)(e j Oek−1)(ei Oe j−1)(ek O).

If i < s < j , then

Õ = (Oei−1)(e j Oek−1)(es Oe j−1)(ei Oes−1)(ek O). �

Let (i, j) and (s, k) be two failures of O with i < s. From Lemma 5, it follows that t (ei ) 6= t (es). Otherwise, s = j ,
t (ek) = t (es) = t (e j ) and k > s, which violates Lemma 5. From Lemma 5 it also follows that either i < s < k < j
or i < j < s < k. Hence, two failure subtrails ei Oe j and es Oek either do not intersect or are contained one in the
other. This property is also valid for any subtrail of O since by deleting arcs of O we do not create new failures.

The failure (i, j) of a subtrail O ′ of O with minimum j is called the initial failure of O ′ and its failure vertex the
initial failure vertex of O ′. Notice that there is no failure (s, k) with i < s < k < j in O ′. It follows that the failure
subtrail T of an initial failure of a subtrail O ′ of O , is an alphabetical trail in the digraph (V, A(T )).

The decomposition of O is the following. Let O0
= O . Let us assume that we have constructed O i . If O i has a

failure, then we construct O i+1 from O i by removing arcs of I i , where I i is the failure subtrail of the initial failure
of O i . Otherwise, the decomposition finishes.

¿From Lemma 5, it is easy to see that the set of failure vertices of O i+1 is the set of failure vertices of O i minus
ui , the initial failure vertex of O i . If we know O i , it is easy to find ui and I i . Hence, the decomposition of O can be
easily obtained.

In order to construct O we will reverse the process. We will construct O , by starting with an alphabetical trail,
and adding subtrails in some non-exhausted vertices. In order to prove the correctness of our algorithm we need to
establish a connection between non-exhausted vertices of O i+1 and failures of O i . More precisely, we need to identify
ui and I i , the initial failure vertex and the initial failure subtrail of O i , from O i+1.

We denote by LastNotEx(T ) the last vertex visited by a trail T among all vertices not exhausted by T .

Lemma 6. Let {O i
: i = 0, . . . , q} be the decomposition of the minimum lexicographically Eulerian circuit O. Then,

Last Not Ex(O i+1) is the initial failure vertex of O i .
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Proof. Let (l(i), r(i)) be the initial failure of O i . Since any initial failure (l(i), r(i)) is a failure of O j , j < i , it is
easy to see that r(i) < r(i + 1), for i = 0, . . . , q − 2. Moreover, A(el(i)O i ) ⊆ A(el(i)O), for i = 0, . . . , q − 1.

Since, for i = 0, . . . , q−1, the vertex ui is not exhausted in O i+1, we only need to prove that for i = 0, . . . , q−1,
every vertex v in t (er(i)+1 O i+1) is exhausted in O i+1.

We prove this latter statement by induction on i . The case i = 0 is immediate from Lemma 5. Let i ≥ 1 and
let v be a vertex in t (er(i)+1 O i+1). Since (l(i), r(i)) is a failure of O and A(el(i)O i ) ⊆ A(el(i)O), from Lemma 5,
v 6∈ t (el(i)Oer(i)), hence v 6∈ t (el(i)O i er(i)). ¿From the induction hypothesis, we know that v is exhausted in O i .
Therefore, v is exhausted in O i+1. �

Lemma 7. I i is the alphabetical trail starting at ui over G \ A(O i+1).

Proof. Let j be the smallest integer such that e j ∈ I i and there is k with ek 6∈ O i+1, t (ek) = t (e j ) and l(ek) < l(e j ).
If such a j does not exist the conclusion is immediate. We shall prove that ek ∈ I i and k < j .

Since ek 6∈ O i+1, then ek ∈ I s for s ≤ i . By Lemma 5, j ≤ r(s). Since (l(s), r(s)) is a failure of O and
l(s) ≤ k < r(s), j 6= r(s).

If j < l(s) then ( j, k) is a failure of O . As j < l(s) ≤ k < r(s), we get a contradiction with a consequence of
Lemma 5. Hence, l(s) ≤ j < r(s) and therefore e j ∈ I s . Thus s = i and ek ∈ I i . Since I i has no failures in O i , we
conclude that k < l. �

Note that after a finite number of steps, we obtain a trail exhausting r with no failure vertex, which is an alphabetical
trail starting at r over G.

Theorem 8. Algorithm MINLEX computes the Eulerian trail of lexicographically minimum label O in k steps, where
k is the number of failure vertices of O. Moreover, it is computed in O(|A(G)|) time.

Proof. The correctness of the algorithm comes from Lemmas 6 and 7. Since the algorithm visits each arc at most
twice, it can be implemented in O(|A(G)|) using an adjacency list to represent the digraph.

MINLEX(A,r ) : Compute the lexicographically minimum Eulerian circuit
starting at r on (V (G), A)

REQUIRE: A an arc-subset of A(G), r a vertex of G.
(1) T ← ALPHABETICTRAIL(A, r)

(2) while Not Ex(T ) 6= ∅

(3) v← Last Not Ex(T )

(4) ei ← the arc in T after the last visit to v

(5) T ← (T ei−1)(MINLEX(A \ A(T ), v))(ei T )

(6) end while
RETURN: T

Where ALPHABETICTRAIL(A, r ) returns the alphabetical trail starting at r
over (V (G), A) and Not Ex(T ) is the set of not exhausted vertices in T .

3. Minimum Eulerian circuit in general digraphs: An NP-complete problem

A locally injective labelling is a crucial property for the complexity of finding the Eulerian trail of minimum label.
In this section, we prove that this problem is NP-complete for a general labelling. In order to prove that, we recall the
following decision problem:

MIN-LEX-EULERIAN-CIRCUIT

Instance: An Eulerian digraph G, a labelling l : A(G)→ Σ of
its arcs, a starting vertex r and a word X ∈ Σ |A(G)|.
Question: Is there an Eulerian circuit T starting at r such that
l(T ) ≤ X?
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Fig. 2. Transformation of a digraph G (DIRECTED-HAMILTONIAN-CIRCUIT instance) into a labelled digraph H (MIN-LEX-EULERIAN-
CIRCUIT instance).

Theorem 1. MIN-LEX-EULERIAN-CIRCUIT is NP-complete.

Proof. It is easy to see that one can guess an Eulerian circuit and compare its labels with those of X in polynomial
time. Hence, the problem belongs to NP.

We present a reduction of a DIRECTED-HAMILTONIAN-CIRCUIT instance (see [7]) into a MIN-LEX-EULERIAN-
CIRCUIT instance, which is polynomially bounded in the size of the input digraph.

Let G be a digraph. We want to test if G contains a directed Hamiltonian circuit. We construct a digraph H in the
following way: for each vertex v ∈ G, we include two vertices v1 and v2 and an arc (v1, v2) in H . Additionally, for
each arc (v, w) ∈ G we include the arc (v2, w1) in H (see Fig. 2). Finally, we label all arcs in H with the label 0.

It is easy to see that G has a Hamiltonian circuit if and only if H has a circuit with label 02|V (G)|.
We can extend the digraph H to an Eulerian digraph H̄ with additional vertices and arcs with label 1 in the

following way: we add a vertex c and we connect every vertex v in H to c with two arcs (v, c) and (c, v) of label
1. With these connections, the resulting digraph is strongly connected even if we remove all arcs in H . Finally, to
each arc (x, y) in H we add an arc (y, x) with label 1. These arcs provide the equality between the in-degree and the
out-degree of each vertex in H̄ . Hence, the resulting digraph is Eulerian. Moreover, if G has a Hamiltonian circuit
then we can remove arcs of its associated circuit of label 02|V (G)| in H̄ and the remaining digraph is still Eulerian.

Therefore, G has a Hamiltonian circuit if and only if H̄ has an Eulerian circuit starting at any vertex r ∈ H with
label smaller or equal to 02|V (G)|1|A(H̄)|−2|V (G)|. �

4. Conclusion

We first note that by interchanging the role of minimum and maximum all our results apply in the study of the
lexicographically maximum Eulerian circuit problem.

What are the capabilities/limitations of MINLEX algorithm? On one hand, one can construct examples of a labeled
Eulerian digraph where the MINLEX algorithm does not obtain a lexicographically minimum Eulerian circuit. On
the other hand, it is easy to construct examples where MINLEX does obtain the lexicographically minimum Eulerian
circuit, even if the labelling is not locally injective. Hence, a natural question is to characterize those labellings where
the MINLEX algorithm obtains a lexicographically minimum Eulerian circuit.
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