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a b s t r a c t

A biclique is a complete bipartite graph. Given an (L, R)-bipartite graph G = (V , E) and a
positive integer k, themaximum edge biclique packing (mebp) problem consists in finding a
set of at most k bicliques, subgraphs of G, such that the bicliques are vertex disjoint with
respect to a subset of vertices S, where S ∈ {V , L, R}, and the number of edges inside the
bicliques is maximized. The maximum edge biclique (meb) problem is a special case of the
mebp problem in which k = 1.

Several applications of the meb problem have been studied and, in this paper, we
describe applications of the mebp problem in metabolic networks and product bundling. In
these applications the input graphs are very unbalanced (i.e., |R| is considerably greater
than |L|), thus we consider carefully this property in our models. We introduce a new
formulation for the meb problem and a branch-and-price scheme, using the classical
branch rule by Ryan and Foster, for the mebp problem. Finally, we present computational
experiments with instances that come from the described applications and also with
randomly generated instances.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A biclique is a complete bipartite graph. Given an (L, R)-bipartite graph G = (V , E) and a positive integer k, themaximum
edge biclique packing (mebp) problem consists in finding a packing containing at most k bicliques, subgraphs of G, such that
the bicliques are vertex disjoint with respect to a given subset of vertices S, where S ∈ {V , L, R}, and the number of edges
inside the bicliques is maximized. If S = V , each vertex can be in at most one biclique inside the packing. On the other hand,
if S = L or S = R, this constraint applies to only one of the classes (L or R). In any case, each edge can be in at most one
biclique inside the packing. In this paper, which is an extension of the work presented in [1], we study the mebp problem
and also themaximum edge biclique (meb) problem, a special case of the mebp problem in which k = 1.

As shown in 2003 by Peeters [16], the meb problem is NP-hard. In 2004, Feige and Kogan [8] conjectured that the meb
problem is hard to approximate within a factor of O(nϵ), for some ϵ > 0. In the cited work, the authors prove that the meb
problem is hard to approximate under the plausible assumption that 3-SAT has no sub-exponential algorithm, and they also
show in [7] that the above conjecture is valid under certain other plausible assumptions. Dawande et al. introduced in [5]
an algorithm with expected approximation ratio of 2, for sufficiently dense random bipartite graphs. For convex bipartite
graphs the problem is polynomially solvable [14]. There aremany applications of themeb problem in biological data analysis
and other areas (see [12] for a very comprehensive survey, and see [6] for a slightly different variant of the problem with
application in multicast network design).
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Different variants of themeb problem can be found in the literature. Consider a function associating a non-negative value
with each edge of a bipartite graph G. The maximum weight biclique problem consists in finding a biclique, a subgraph of G,
with maximum weight, where the weight of a biclique is the sum of the weights of its edges. As shown in 2008 by Jinsong
Tan [19], the maximumweight biclique problem is hard to approximate. We say that an (L, R)-bipartite graph B is balanced
if |R| = |L|. Feige and Kogan showed in [8] that themaximum balanced biclique problem is hard to approximate. The problem
of finding a biclique with maximum number of vertices in a bipartite graph can be solved in polynomial time [9]. Although
there is a wide literature on the meb problem and some variants of it, we could not find any previous result on the mebp
problem.

One of the motivations of this work is data analysis in Bioinformatics. Consider L as a set of individuals and R as a set of
conditions. An edge uv means that individual u satisfies condition v. The aim is to cluster individuals based on the common
conditions satisfied by the entire cluster. In particular, this method has been used in the study ofmetabolic networks in order
to improve the interpretation of the data given by the analysis of Elementary Flux Modes (EFMs). The EFMs of a metabolic
network correspond to minimal sets of reactions that can be used in steady state (for precise definitions of EFMs see [18]).
However, the number of EFMs obtained in real networks is, in general, huge and thus impossible in practice to analyze ‘‘by
hand’’. For instance, the central metabolism of E. coli corresponds to a network of 106 reactions and about 26 000 000 EFMs
(see [20]). In this context, a way to obtain more significant biological information is dividing the metabolic network into k
sets of reactions that belong to many EFMs (see [13]). This corresponds to solving the mebp problem where L is the set of
reactions, R is the set of EFMs (with |L| ≪ |R|) and bicliques are the clusters with non-overlapping reactions (i.e., S = L).

Another application of themebp problem is in the context of consumer product bundling. The concept of product bundling
is the sale of two or more separate goods in a single package. This marketing strategy is massively utilized, especially in
retail products. We study the problem of selecting an optimal set of k product bundles that maximize the total number of
products sold via bundles, subject to client’s demand for products. The motivation for this problem came from a major food
company that was evaluating the capability to deliver its products directly to small grocers, avoiding its current wholesaler
and distributors. This problem can be modeled as an instance of an mebp problem by constructing a bipartite graph, where
vertices in L represent products and vertices in R clients, and an edge uv corresponds to a client v that consumes a particular
product u. In this case, a biclique on this graph corresponds to a set of clients (potential consumers) that buy a set of products
(product bundle), and the goal is to find k product bundles thatmaximize the supplied demand (i.e., the number of the edges
inside the bicliques). In this application S = R means that each client is supposed to buy at most one bundle. On the other
hand, S = L means that one product cannot appear in more than one bundle. Also in this application the input bipartite
graphs are very unbalanced (there are much more customers than products).

This paper is organized as follows. In Section 2 we study the meb problem and in Section 2.1 a new integer linear
formulation is introduced for the problem. In Section 3 we present a branch-and-price scheme for the mebp problem. The
computational experiments are shown in Section 4. In Section 4.1 we compare some different approaches for solving the
meb problem and in Section 4.2 we evaluate our implementation of the branch-and-price procedure proposed in Section 3.
Finally, we present the concluding remarks and future work in Section 5.

2. Formulations for the MEB problem

Let G = (V , E) be a simple (L, R)-bipartite graph. For simplicity, given an edge uv ∈ E, we assume as a convention that
u ∈ L and v ∈ R (i.e., the label in the left side corresponds to the vertex in class L, and the label in the right side corresponds to
the vertex in class R).We assume,without loss of generality, that |L| ≤ |R|. In particular, we are interested in very unbalanced
bipartite graphs (i.e., R is much larger than L).

Given a subgraph B of G, we denote its vertex set by VB, where LB = VB ∩ L and RB = VB ∩ R, and its edge set by EB. A
biclique B of G is said to bemaximum if |EB| ≥ |EB′ |, for each biclique B′ of G. The meb problem can be stated as follows.

Problem 2.1. Given a bipartite graph G, find a maximum biclique B of G.

We say that two edges uv and pq of E are incompatible if u ≠ p, v ≠ q and uq ∉ E or pv ∉ E. Let I = {{uv, pq} ∈ E × E |

uv and pq are incompatible} be the set of all pairs of incompatible edges of E.

Observation 2.1. An edge set which contains no incompatible edges and has maximum size induces a maximum biclique.

Based on Observation 2.1, Dawande et al. introduced in [5] the following formulation for the meb problem.

max

uv∈E

xuv

(ind set) s.t. xuv + xpq ≤ 1, for each {uv, pq} ∈ I (1)

xuv ∈ {0, 1}, for each uv ∈ E. (2)
In (ind set) we have that xuv = 1 if and only if the edge uv is in the biclique (i.e., x is the characteristic vector of the

biclique’s edge set). Let H = (VH , EH) be the graph defined as follows: VH = {ve | e ∈ E} and EH = {vevf | {e, f } ∈ I}. In
this construction, there is a one-to-one correspondence between each independent set (i.e., a set of pair-wise non-adjacent
vertices) in H and a feasible solution to (ind set). Thus, formulation (ind set) can be strengthened with well known valid
inequalities for the stable set polytope, odd-hole and clique inequalities, for instance (see [11]). As Bermanand Schnitger show



4 V. Acuña et al. / Discrete Applied Mathematics 164 (2014) 2–12

in [4], the independent set problem is NP-hard to approximate by a factor of O(nϵ), for some constant ϵ > 0, where n = |VH |

is the number of vertices in the input graph. Despite the hardness of solving, and even approximating, the independent set
problem, there are some methods for solving (in practice) this problem in a reasonable running time, for considerable large
graphs (see [2] for an integer programming approach and [10,15,21] for branch-and-bound algorithms). Thus, one approach
that we consider in Section 4.1 for solving the meb problem is to apply these methods for finding a maximum independent
set in the graph H (or equivalently, finding a maximum clique in the complement of H).

2.1. A new formulation for the meb problem

Given a vertex u ∈ V , we denote by N(u) ⊂ V the set of vertices adjacent to u, and we define N(u) = R \ N(u), if u ∈ L,
otherwise N(u) = L \ N(u). We denote the degree of a vertex u by d(u) = |N(u)|. Below, we introduce a new formulation
for the meb problem.

max

u∈L

yu

(meb v) s.t. zu + zv ≤ 1, for each u ∈ L and v ∈ N(u) (3)
yu ≤ d(u)zu, for each u ∈ L (4)
yu ≤


v∈N(u)

zv, for each u ∈ L (5)

yu ≥ 0, for each u ∈ L (6)
zu ∈ {0, 1}, for each u ∈ V . (7)

Lemma 2.1. (meb v) is a formulation for the meb problem.

Proof. Let (z∗, y∗) be an optimal solution to (meb v). By constraints (3)we have that z∗ is the characteristic vector of a vertex
set which induces a biclique B∗. By constraints (4) we have that y∗

u > 0 implies z∗
u = 1. Since we maximize y, by constraints

(5) we have that y∗
u = |RB∗ |, for each u ∈ LB∗ , which implies that


u∈L y

∗
v = |EB∗ |. Conversely, given a biclique B, one can

easily construct a feasible solution to (meb v) in which the objective function’s value is |EB|. �

In (ind set) there are O(|E|) variables and O(|E|
2) constraints, while in (meb v) there are O(|V |) variables and O(|L ∥ R|)

constraints. The following observation allows us to adapt the formulation (meb v) in order to reduce the number of binary
variables to O(|L|).

Observation 2.2. Given a subset L′
⊆ L, we have that B = (LB, RB), where LB = L′ and RB = {v ∈ R | L′

⊆ N(v)}, is a biclique
and |EB| ≥ |EB′ |, for each biclique B′ such that LB′ = L′.

From Observation 2.2 follows that we can focus only on finding the appropriate subset of L. Below, we introduce a
formulation for the meb problem based on this observation.

max

v∈R

yv

(meb l) s.t. yv ≤


u∈N(v)

zu, for each v ∈ R (8)

yv ≤ (1 − zu)d(v), for each u ∈ L and v ∈ N(u) (9)
yv ≥ 0, for each v ∈ R (10)
zu ∈ {0, 1}, for each u ∈ L. (11)

The binary variables z and the continuous variables y are interpreted in the same way as in (meb v). However, now the
y variables are defined for the vertices in R instead of L, and z variables are defined only for the vertices in L. A maximum
biclique B∗ can be retrieved from an optimal solution (z∗, y∗) to (meb l) in the following way: LB∗ = {u ∈ L | z∗

u = 1} and
RB∗ = {v ∈ R | y∗

v > 0}.
The number of constraints in (meb l) can be reduced from O(|L ∥ R|) to O(|V |) by aggregating constraints (9) as below.

v∈N(u)

yv ≤


v∈N(u)

d(v)(1 − zu), for each u ∈ L. (12)

We denote by (meb agg) the formulation which is the same as (meb l), but replacing constraints (9) by constraints (12).
Considering the number of constraints multiplied by the number of variables, (meb agg) is the smallest formulation among
the ones presented in this section. In practice, the effectiveness of a formulation depends not only on its size, but also it
depends on the strength of its linear relaxation. Clearly, (meb agg) is weaker than (meb l). However, it is not clear how good
are the bounds given by the linear relaxations of (ind set), (meb v), (meb l) and (meb agg). In Section 4.1 we compare the
performance of all these formulations in practice.
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3. A formulation for the MEBP problem

Given a biclique B, we denote by SB the set of vertices in VB ∩ S, where S ∈ {V , L, R}. A biclique packing in G is a set H of
bicliques of G, such that for each pair B, B′ of distinct bicliques in H , we have that SB ∩ SB′ = ∅. The mebp problem can be
stated as follows.

Problem 3.1. Given a bipartite graph G and a positive integer k, find a biclique packing H of G such that |H | ≤ k and
B∈H |EB| is maximum.

If S = V , each vertex can be in atmost one biclique inside the packing. On the other hand, if S = L or S = R, this constraint
applies to only one of the classes (L or R). In all cases, each edge can be in at most one biclique inside the packing. Note that
if k ≥ |L| and S = L, the problem becomes trivial, since for each u ∈ L the star induced by {u} ∪ N(u) is a biclique (the case
in which S = R and k ≥ |R| is analogous). On the other hand, if k = 1, we have the meb problem.

Let B be the set of all bicliques which are subgraphs of G and let B(v) = {B ∈ B | v ∈ VB} be the set of all bicliques
containing the vertex v, for each v ∈ V . We define variables xB ∈ {0, 1}, for each B ∈ B, with the following interpretation:
xB = 1 if and only if B is contained in the packing. Now, we introduce a formulation for the mebp problem.

max

B∈B

|EB| · xB

(Pmebp) s.t.

B∈B

xB ≤ k (13)
B∈B(u)

xB ≤ 1, for each u ∈ S (14)

xB ∈ {0, 1}, for each B ∈ B. (15)

Constraint (13) guarantees that at most k bicliques are chosen and constraints (14) guarantee that the chosen bicliques
are vertex disjoint with respect to S. The objective is to maximize the size of the packing. In [1] a more compact formulation
is presented for this problem, in the sense that the number of constraints and variables is polynomial in the input size. We
do not expose that formulation here because it has a very poor performance in practice, due to its symmetry.

Let (Lmebp) be the linear relaxation of (Pmebp), where constraints (15) are replaced by xB ≥ 0, for each B ∈ B. The number
of variables in (Lmebp) is exponential in the size of the input, thus we propose here a column generation algorithm (see [3]
for a nice survey on the subject) for solving (Lmebp). For this algorithm, we need to investigate the corresponding so-called
pricing problem (i.e., find a variable xB with negative reduced price or give a proof that no such variable exists). First, consider
the dual of (Lmebp).

min

u∈S

αu + kβ

(Dmebp) s.t. β +


u∈SB

αu ≥ |EB|, for each B ∈ B (16)

αu ≥ 0, for each u ∈ S (17)
β ≥ 0. (18)

The dual variable β is associated with the constraint (13) and the dual variables α are associated with the constraints
(14). For simplicity, when S ≠ V , we assume that α ∈ R|V |

+ and αv = 0, for each v ∈ V \ S. For a given biclique B in B,
the reduced price of a variable xB is given by x̂B = β +


v∈VB

αv − |EB|. Let f : B × R|V |

+ → R be the function defined
as follows: f (B, α) = |EB| −


v∈VB

αv . The pricing problem is strongly related to the problem of finding a variable with
minimum reduced price, which in this case corresponds to solving the following optimization problem.

Problem 3.2. Given a bipartite graph G and a vector α ∈ R|V |

+ , find a biclique B in B such that f (B, α) is maximum.

The meb problem is a special case of the Problem 3.2 in which αv = 0, for each v ∈ V . Hence, Problem 3.2 is NP-hard as
well. Moreover, adapting the formulations for the meb problem in order to solve the Problem 3.2 seems a natural idea and,
except for formulation (meb l), it is an easy task. As we show in Section 4.1, (meb l) performs much better in practice than
the other formulations presented in Section 2. Thus, nowwe focus on how to adapt (meb l) in order to solve the Problem 3.2.

Observation 3.1. Given a vector α ∈ R|V |

+ and a subset L′
⊆ L, we have that B = (LB, RB), where LB = L′ and

RB = {v ∈ R | L′
⊆ N(v) and αv < |L′

|}, is a biclique and f (B, α) ≥ f (B′, α), for each biclique B′ such that LB′ = L′.

Therefore, for the Problem 3.2 we also have the convenient property that we can focus only on finding the appropriate
subset of L in order to find a biclique B in B which maximizes f (B, α). However, the Problem 3.2 is a little more tricky to
formulate using only O(|L|) binary variables, as in (meb l), when S ≠ L. We define Γmeb = {(z, y) ∈ {0, 1}|L| × R|R|

+ | (z, y)
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satisfies constraints (8), (9), . . . , (11) from (meb l)}. Below, we introduce a formulation for the Problem 3.2 and later on we
discuss what can be simplified if S = L.

max

v∈R

(yv − αvrv) −


u∈L

αuzu

(Pprc) s.t.
|L|
i=1

li = 1 (19)


u∈L

zu =

|L|
i=1

ili (20)

yv ≤ |N(v)|

|L|
i=⌊αv+1⌋

li, for each v ∈ R (21)

|L|
i=⌊αv+1⌋

li ≤ rv +


u∈N(v)

zu, for each v ∈ R (22)

(z, y) ∈ Γmeb (23)
rv ≥ 0, for each v ∈ R (24)
li ∈ {0, 1}, for i = 1, . . . , |L|. (25)

The interpretation for the variables is the following: rv = 1 if and only if v is in the biclique; li = 1 if and only if |LB| = i,
where LB ⊆ L is the set of vertices in L which are in the biclique; variables z and y are interpreted in the same way as in
(meb l).

Given an optimal solution (z∗, y∗, r∗, l∗) to (Pprc), let B∗ be the biclique such that LB∗ = {u ∈ L | z∗
u = 1} and

RB∗ = {v ∈ R | y∗
v > 0}. Note that v ∈ RB∗ if and only if (i) αv <


u∈L z

∗
u and (ii) u ∈ N(v), for each u ∈ L such that

z∗
u = 1. Thus, the vertices in R are chosen correctly, according to Observation 3.1. More precisely, constraints (19) and (20)
are introduced in order to ‘‘keep track’’ of the cardinality of L∗

B , while constraints (21) are introduced for preventing the
vertices in R, which do not satisfy the property of Observation 3.1, from being included in the biclique. Constraints (22)
guarantee that if v is chosen to be in the biclique, then rv = 1. The r variables are defined in order to calculate the value of
f (B∗, α) correctly in the objective function.

Note that we define in (Pprc) only 2|L| + 1 binary variables. But, since l and z are integral, then in any optimal solution r
and y are integral as well.

If S = L, we can remove the variables r and l, and also remove all the constraints, except (23) (in this case we have the
same formulation as (meb l), except for the objective function).

One can solve (Lmebp) by column generation, using a MIP solver for solving (Pprc) at each pricing step. Alternatively, one
can use heuristics for finding columns with negative reduced price (not necessarily minimum) and solve (Pprc) only if the
heuristics fail. Since we cannot expect the optimal solution found to (Lmebp) to be integral, we propose now a branch-and-
price scheme for solving (Pmebp).

3.1. A branch-and-price scheme for the mebp problem

Given an optimal solution x to (Lmebp), let λuv =


B∈B(u)∩B(v) xB be an implicit variable, for each pair of distinct vertices
{u, v} ⊂ S, with the following interpretation: λuv = 1 if and only if the vertices u and v are in the same biclique. In this
section, we introduce a branch-and-price algorithm which uses these variables for branching. The branching rule proposed
here is similar to the one introduced by Ryan and Foster in [17] for the scheduling problem. For more general branching
rules we refer to the work of Vanderbeck and Wolsey [22].

Given a variable λuv with fractional value µ, one can branch into the following two possibilities: λuv ≤ ⌊µ⌋ = 0 or
λuv ≥ ⌈µ⌉ = 1. Thus, we are interested in how to solve the following problem.

Problem 3.3. Given two sets F1 ⊂ S × S and F0 ⊂ S × S, find a solution to (Lmebp) subject to λuv = 1, for each {u, v} ∈ F1,
and λuv = 0, for each {u, v} ∈ F0.

We define BF0 = {B ∈ B | {u, v} ⊈ VB, for each {u, v} ∈ F0} and Xmebp = {x ∈ RB
+

| x satisfies (13) and (14) from (Pmebp)
and x ≥ 0}. Consider the following formulation for the Problem 3.3.

max

B∈BF0

|EB| · xB

(L2mebp) s.t.


B∈BF0 (u)∩BF0 (v)

xB ≥ 1, for each {u, v} ∈ F1 (26)

x ∈ Xmebp. (27)
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Since we include in (L2mebp) only columns in BF0 , then we have that λuv = 0, for each {u, v} ∈ F0, and by constraints (26)
and (27) we have that λuv = 1, for each {u, v} ∈ F1. Thus (L2mebp) is a formulation for the Problem 3.3.

Given an optimal solution x to (L2mebp), we define ω(x) =


B∈B |EB|xB. If x is integral, thus we do not need to branch on
the corresponding node. Otherwise, we have to select a variable λuv with fractional value (a candidate for branching). In
Lemma 3.3 we prove that if x is fractional, then there exists a variable λuv with fractional value. First, we prove the following
two auxiliary lemmas.

Lemma 3.1. Given an optimal solution x to (L2mebp), such that x is fractional, we have that x has at least two entries with fractional
value.

Proof. Since the right hand sides of all constraints in (L2mebp) are integral, then the result follows immediately. �

Lemma 3.2. Let x be an optimal solution to (L2mebp), such that for each pair of distinct variables xB1 and xB2 with fractional values
we have that either SB1 ∩ SB2 = ∅ or SB1 = SB2 . Thus, there exists an optimal solution x∗ to (L2mebp), such that x∗ is integral and
ω(x) = ω(x∗).

Proof. LetΨ : R|B|

+ ×B×B×R+ ⇒ R|B|

+ be the function defined as follows:Ψ (x, B1, B2, ϵ) = x′, where x′

B1
= xB1+ϵ, x′

B2
=

xB2 − ϵ and x′

B = xB, for each B ∈ B \ {B1, B2}. We prove the lemma by induction on n, where n is the number of variables
with fractional value. If n = 0, then the result follows immediately. Now, suppose that n > 0. By Lemma 3.1, we have that
n ≥ 2. Let xBmax be a variable with fractional value, such that |EBmax | is maximum. Note that one of the following two cases
must occur: (i) SBmax = SBeq , for some other variable xBeq with fractional value; (ii) SBmax ∩ SB = ∅, for each other variable xB
with fractional value.

For the case (i), consider the vector x′
= Ψ (x, Bmax, Beq, ϵ), where ϵ = min{1 − xBmax , xBeq}. Since SBmax = SBeq , then x′

does not violate any constraint of (L2mebp). Moreover, we have that x′

Bmax
= 1 or x′

Beq = 0 (i.e., x′ has less than n variables with
fractional values), and also ω(x′) ≥ ω(x), which implies ω(x′) = ω(x), since x is optimal. Thus, by the induction hypothesis,
we have that there is a feasible solution x∗ such that ω(x∗) = ω(x′) = ω(x) and x∗ is integral.

For the case (ii), let xBneq be a variable with fractional value, such that Bmax ≠ Bneq. Since constraints (26) are satisfied
with equality, then we have that {u, v} ⊈ SBmax , for each {u, v} ∈ F1. By (ii), we have that the value of the slack variable in
row corresponding to u in constraints (14) is τu = 1 − xBmax , for each u ∈ SBmax . Therefore, x

′
= Ψ (x, Bmax, Bneq, ϵ) does not

violate any constraint of (L2mebp), where ϵ = min{1 − xBmax , xBneq}. As in case (i), we have that x′

Bmax
= 1 or x′

Bneq = 0 and, by
the induction hypothesis, there is a feasible solution x∗ such that ω(x∗) = ω(x′) = ω(x) and x∗ is integral. �

Lemma 3.3. Given an optimal solution x to (L2mebp), such that x is fractional, we have that λuv is fractional for some u, v ∈ S or
there exists a feasible solution x∗ to (L2mebp), such that ω(x) = ω(x∗) and x∗ is integral.

Proof. By Lemma 3.1, there are at least two entries in x with fractional value, thus one of the following two cases must
occur: (i) for each pair of distinct variables xB1 and xB2 with fractional values, we have that either SB1 ∩ SB2 = ∅ or SB1 = SB2 ;
(ii) there are two distinct variables xB1 and xB2 with fractional values, such that u ∈ SB1 ∩ SB2 and v ∈ SB1∇SB2 , for some
u, v ∈ S, where SB1∇SB2 = (SB1 ∪ SB2) \ (SB1 ∩ SB2).

In case (i), by Lemma 3.2, we have that there is a feasible solution x∗ such that ω(x∗) = ω(x) and x∗ is integral. In case
(ii), without loss of generality, suppose that v ∈ SB1 and v ∉ SB2 . Since B1 ∈ B(u) ∩ B(v), then


B∈B(u)∩B(v) xB ≥ xB1 > 0.

Since B2 ∉ B(u) ∩ B(v), B2 ∈ B(u) and


B∈B(u) xB ≤ 1 (by constraints (14)), then we have that


B∈B(u)∩B(v) xB ≤
B∈B(u) xB − xB2 < 1. Thus, we have that 0 < λuv < 1. �

Now, we investigate the pricing problem with respect to (L2mebp). The reduced price of a variable xB is given by

x̂B = β +


v∈VB

αv − |EB| −


{u,v}⊆SB∩F1

γuv,

where γ is the vector of dual variables associated with constraints (26). Let φ(B, α, γ ) : BF0 × R|V |

+ × R|F1|
+ → R be the

function defined as follows: φ(B, α, γ ) = |EB| +


{u,v}⊆SB∩F1
γuv −


u∈VB

αu. The problem of finding a minimum reduced
price variable xB with respect to (L2mebp) can be stated as follows.

Problem 3.4. Given a bipartite graph G = (V , E), two sets F1 ⊆ S × S and F0 ⊆ S × S, and two vectors α ∈ R|V |

+ and
γ ∈ R|F1|

+ , find a biclique B, subgraph of G, such that B ∈ BF0 and φ(B, α, γ ) is maximum.

We define binary variables zu, not only for each u ∈ L as before, but also for each u ∈ RF , where RF = {v ∈ R | v ∈ {u, v},
for some {u, v} ∈ F1 ∪ F0}, and we denote by z|L the vector z restricted to the elements in L. On the other hand, we define
variables rv only for each v ∈ RF , where RF = R \ RF . The variables y and l are defined exactly as in (Pprc). Finally, we define
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Υprc = {(z|L, l, y, r) ∈ {0, 1}|L| ×{0, 1}|L| × R|R|
+ × R|RF |

+ | (z|L, y, l, r) satisfies (19)–(25) from (Pprc), where (21), (22) and (24)
are defined only for each v ∈ RF }. Consider the following formulation for the Problem 3.4.

max

v∈R

yv +


{u,v}∈F1

γuvzu −


v∈RF

αvrv −


u∈L∪RF

αuzu

(P2
prc) s.t. zu + zv ≤ 1, for each {u, v} ∈ F0 (28)

zu = zv, for each {u, v} ∈ F1 (29)

yv ≤ d(v)zv, for each v ∈ RF (30)
u∈N̄(v)

zu ≤ (1 − zv)|N(v)|, for each v ∈ RF (31)

(z|L, l, y, r) ∈ Υprc (32)

zu ∈ {0, 1}, for each u ∈ L ∪ RF . (33)

Given an optimal solution (z∗, y∗, r∗, l∗) to (P2
prc), let B

∗ be the biclique such that u ∈ LB∗ if and only if z∗
u = 1, and

v ∈ RB∗ if and only if y∗
v > 0. For simplicity, we assume that if v ∈ RF and zv = 1, then y∗

v > 0 (if it does not hold we
would have LB∗ = ∅ and RB∗ ≠ ∅, but the formulation works for this case as well). Constraints (28) guarantee that B∗

∈ BF0 .
From constraints (26) in (L2mebp) follows that xB = 0 in any optimal solution, for each B ∈ B such that u ∈ SB and v ∉ SB,
for some {u, v} ∈ F1. Thus, we introduce constraints (29) in order to prevent the generation of such variables. Constraints
(30) guarantee that if z∗

v = 0, then y∗
v = 0 as well. On the other hand, constraints (31) guarantee that z∗

v = 1 only if
N(v) ∩ LB∗ = LB∗, for each v ∈ RF . Since the value of the objective function for (z∗, l∗, y∗, r∗) is precisely φ(B∗, α, γ ), thus
(P2

prc) is a formulation for the Problem 3.4.
Again, we can simplify the formulation of the pricing problem if S = L. In this case we have that RF = ∅, thus we have no

constraints (30) and (31). If for a given instance our branch-and-price procedure needs to investigate a huge number of nodes
in the branch-and-bound tree, thenwedonot expect the program to stop in reasonable running time. Thus,we are interested
in the cases in which the number of investigated nodes is relatively small (i.e., F1 and F0 are small and, consequently, RF is
small as well). Considering this assumption, the formulation (P2

prc) has almost the same number of binary variables as (Pprc).

3.2. Considerations about our implementation

There are many details that have to be carefully taken into account in order to make a good implementation of a branch-
and-price algorithm. In this section we comment the issues that have more impact in our implementation, as evaluated in
various experiments (not all of them are reported in this paper):

• How to construct a first set of columns for the master LP: we use a greedy algorithmwhich takes amaximumbiclique B in G,
add xB in the master LP and repeat (k times) recursively the process for G[V \ SB]. Note that this procedure also produces
a feasible solution to (Pmebp) and, consequently, a lower bound on the optimal value. We refer to this procedure as the
greedy heuristic (gh).

• Heuristics for solving the pricing problem: usually,MIP solvers provide callback routines for getting feasible solutions found
during the optimization process, thuswe include all collected solutionswith negative reduced price, not only the optimal
one. Moreover, if a certain number of solutions with negative reduced price are found, we stop the solver before finding
a variable with minimum reduced price.

• Heuristics for getting primal bounds: at any timewe can obtain a feasible solution by solving themaster IP restricted to the
columns added in the master LP up to the moment and, as we noted empirically, it takes a very short time to do. Before
doing that, we carry out the following pre-processing: for each pair of variables xB1 and xB2 with positive value in the
current solution, we add to themaster LP the columns xB′

1
and xB′

2
, where VB′

1
= VB1 \(SB1 ∩SB2) and VB′

2
= VB2 \(SB1 ∩SB2).

We refer to this procedure applied at the first node of the branch-and-bound tree as the post-processing heuristic (pph).
• How to select the next node to be explored in the branch-and-bound tree and how to choose a variable with fractional value for

branching: since we are leading with amaximization problem, the node’s selection policy affects more directly the upper
bound. As is usually done in this case, we select a node with the biggest upper bound and branch in a more fractional
variable.

4. Computational experiments

In this section we present computational experiments with randomly generated instances and also with instances that
come from the applications in metabolic networks and product bundling. We used CPLEX©12.2 as the MIP solver and the
machine configurations are the following: eight processors Intel©Xeon©E5440 (2.83 GHz) and 32 GB of RAM.
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Table 1
Randomly generated graphs (|L| = 10 and |R| = 3000).

Dns (meb v) (meb l) (meb agg) (jk)
Time (s) Nd Gap (%) Time Nd Gap (%) Time (s) Nd Gap (%) Time

0.1 20 75 361 25 s 0 361 4 71 361 1 s
0.2 38 82 376 1 m 06 s 0 376 9 105 376 16 s
0.3 47 88 381 1 m 25 s 13 381 11 109 381 1 m 16 s
0.4 31 140 383 1 m 14 s 175 383 12 197 383 4 m 37 s
0.5 28 234 372 53 s 406 371 13 372 371 13 m 14 s
0.6 24 351 298 50 s 585 296 14 647 296 33 m 58 s
0.7 20 597 228 39 s 1333 221 24 1256 223 TLE
0.8 17 1207 148 23 s 1897 131 23 1499 135 TLE
0.9 4 0 58 5 s 278 27 10 35 38 TLE

Fig. 1. Running time of formulations (meb v), (meb l) and (meb agg).

4.1. Computational experiments with meb problem

We consider two approaches for solving the meb problem. The first one is to solve (meb v), (meb l) and (meb agg)
in a Mixed Integer Program (MIP) solver, and the second one is to use algorithms for finding a maximum clique in the
complement of the graph H , as described in Section 2. We do not report the experiments made with formulation (ind set),
since its performance is really poor, even for solving only its linear relaxation. For solving the maximum clique problem we
used the branch-and-bound algorithm introduced by Janez Konc [10], which we denote by (jk) (the source code is available
at http://www.sicmm.org/~konc/maxclique/).

We present the results of the experiments with randomly generated instances in Table 1. In each row of Table 1 we
show the arithmetic means between the instances solved to optimality in less than 1 h, where the number inside brackets
indicates how many instances, among the 10 generated, were solved to optimality. Column ‘‘Dns’’ has the density of the
input graph (i.e., |E|

|R|·|L| ), column ‘‘Nd’’ contains the number of nodes explored by cplex in the branch-and-bound tree and
column ‘‘Gap’’ contains the gap between the linear relaxation (before cplex adding general purpose cutting-planes) and the
optimal integer solution.

In Fig. 1 we draw a graph of the running time of our formulations. We do not include the (jk) algorithm in the graphic
because it is much slower than the others and for graphs with density greater than 0.6 it was time limit exceeded (TLE). In the
case of algorithm (jk) and formulation (meb agg), the smaller is the density of the graph, the easier it becomes to solve the
problem. On the other hand, in the case of formulations (meb l) and (meb v), the gap seems to have more influence on the
results than the density of the graph. All the formulations have almost the same values of gap. Since (meb v) hasmore binary
variables than (meb l), it gives more information for the solver to generate good cuts and to make a better pre-processing
in the constraint matrix. Although (meb agg) has the same variables as (meb l), its performance is better than the other
ones, for graphs with density up to 0.6, due to its reduced size. But this trick does not work with the ‘‘aggregated version’’
of (meb v). We made tests with it and we decided not to report them, since the results are far from being reasonable, due to
its very weak linear relaxation. For graphs with density 0.7 or greater, (meb v) performed slightly better than (meb agg).

In Table 2 we show the experiments with instances that come from applications in product bundling (instances PB1 and
PB2) and in metabolic networks (instances MN1 and MN2). For these instances, (meb agg) performed rather better than
the other methods. For instances that come from the application in metabolic networks the algorithm (jk) performed very
poorly (in instance MN2 it got amemory limit exceeded—MLE).

http://www.sicmm.org/~konc/maxclique/
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Table 2
Instances that come from the applications.

Inst. |L| |R| Dns (meb v) (meb l) (meb agg) (jk)
Time Nd Gap

(%)
Time Nd Gap

(%)
Time Nd Gap Time

PB1 32 760 0.4 1 m 02 s 3038 179 52 s 2295 178 20 s 966 188 4 m 09 s
PB2 77 760 0.3 1 h 00 m 00 s 128285 358 24 m 52 s 29961 358 1 m 51 s 11146 361 6 m 10 s
MN1 16 4637 0.6 3 m 25 s 391 190 3 m 17 s 779 190 1 m 29 s 613 192 12 h 36 m 31 s
MN2 40 4637 0.4 46 m 59 s 1198 255 1 h 00 m 00 s 2508 255 4 m 34 s 935 255 MLE

4.2. Computational experiments with mebp problem

In this section we show the experiments with mebp problem. We present the results of the experiments with randomly
generated instances in Table 3. In each row of Table 3 we show the arithmetic means between the instances solved to
optimality in less than 1 h, among the 10 generated. The first two columns show the parameters k and S (we tested several
values for these parameters and selected the ones we consider more significant), while the third column shows the density
of the input graph. The next four columns have the time spent to run the greedy heuristic ‘‘GH’’, to solve the master linear
program ‘‘LP’’, to run the post-processing heuristic ‘‘PPH’’ and to solve the integer program with branch-and-price ‘‘IP’’. The
next two columns show the number of pricing problems solved ‘‘Prc’’ and the number of explored nodes in the branch-and-
bound tree ‘‘Nd’’. The next two columns ‘‘GH’’ and ‘‘PPH’’ show the gap between heuristic solutions and the optimal solution,
respectively. Column ‘‘OPT’’ shows the number of instances solved to optimality. The next two columns show the number of
tests which were stopped by timeout, where column ‘‘LP’’ corresponds to instances for which even the LPs were not solved
and column ‘‘IP’’ corresponds to instances for which the timeout occurred after solving the LP. Finally, the last column ‘‘Gap’’
shows the gap between the upper and lower bounds when the timeout occurred.

As shown in Table 3, the results are quite good for S = L. In this case, all instances were solved to optimality at the root
node of the branch-and-bound tree and the number of pricing problems solved as well as the total time needed for solving
these instances was quite small. Intuitively, since S = L is small, the number of intersecting bicliques tends to be smaller
than in other cases. In all choices of S, the smaller is the density of the graph, the easier it becomes to solve the problem.
The case in which S = V is slightly more difficult than when S = R. This can be better seen if we consider the last three
columns. Some values in Table 3 should be carefully analyzed to not be misinterpreted. For example, when k = 6 (and
k = 9), dens = 0.5 and S = V , just one instance was solved to optimality and in those cases the time spent to solve the IP
(after column generation) was 0 s. In cases like these the last three columns express better what happened in the tests.

The gap between GH and the optimal value is reasonable in most cases, while the solutions produced by PPH are in all
cases very close to optimal. On the other hand, the time needed by GH is rather shorter than the time needed by PPH (note
that PPH can be executed only after column generation terminates). Moreover, in most cases the time needed to prove that
the solution found by PPH is optimal is much larger than the time needed to find the solution itself. The value of k and the
density of the input graph seem to have an influence on the quality of the solutions found by GH. In all cases, the bigger k
is, the worse the gap is. When S = L, GH obtains worse gaps when the input graph is more dense. On the other hand, when
S = V or S = R, GH obtains worse gaps when the input graph is less dense.

In Table 4 we show the experiments with instances that come from applications in product bundling and metabolic
networks. We solved these instances for k = 3, . . . , 9 and calculated the arithmetic means of the results. In instances with
S = R or S = V we could not solve even the master linear program for any value of k (we stopped the program after 48 h of
processing). Thus, we consider only the case in which S = L.

As shown in Table 4, the number of pricing problems solved in all instances was very small and the optimal solutions
were found at the root node (except in instance PB1 for which it was necessary to explore only one more node). The hardest
instance was PB2, in which |L| is the biggest one.

The data for the application in product bundling comes from a major food company in Chile. It was constructed from
the historical weekly demand of 760 small retailers over 497 SKU. After preprocessing the data, we obtain an instance of
77 products and 760 clients (instance PB2). The interest of the company was to construct at most five product bundles. The
resulting five bundles correspond to 44% of the total demand.

5. Concluding remarks and future work

We presented new formulations for meb and mebp problems and evaluated them with computational experiments
with randomly generated instances. Moreover, we described two important applications of the mebp problem and solved
instances that come from these applications. Our formulations were specially designed for instances in which the input
graphs are very unbalanced and, as shown in the computational experiments, we obtained good results for this case. Our
experiments also show that pure combinatorial algorithms for the maximum clique problem can be successfully applied in
order to solve small instances of the meb problem.

Future work can be done on the meb problem by developing pure combinatorial algorithms for solving it (adapting the
algorithms for the clique problem seems a promising idea). Perhaps, such an algorithm can be adapted in order to improve
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Table 3
Randomly generated bipartite graphs (|L| = 10 and |R| = 100).

S k Dns Time Number of Gap #OPT Timeout
GH (s) LP PPH (s) IP Prc Nd GH (%) PPH (%) #LP #IP Gap (%)

L

3
0.3 0 0 s 0 0 s 2 0 0 0 10 – – –
0.5 1 1 s 0 0 s 3 0 0 0 10 – – –
0.8 0 5 s 0 0 s 17 0 15 0 10 – – –

6
0.3 1 0 s 0 0 s 2 0 0 0 10 – – –
0.5 1 1 s 0 0 s 5 0 1 0 10 – – –
0.8 0 2 s 0 0 s 21 0 56 0 10 – – –

9
0.3 1 0 s 0 0 s 2 0 0 0 10 – – –
0.5 1 1 s 0 0 s 7 0 34 0 10 – – –
0.8 2 2 s 0 0 s 21 0 75 0 10 – – –

R

3
0.3 0 41 s 1 4 m 19 s 522 15 9 1 80 20 – –
0.5 1 1 m 57 s 1 7 m 43 s 365 13 8 1 90 10 – –
0.8 1 13 m 14 s 1 9 m 15 s 373 2 8 0 90 – 10 1

6
0.3 0 1 m 11 s 1 5 m 14 s 586 21 32 2 60 10 30 2
0.5 1 5 m 18 s 3 14 m 46 s 452 14 25 0 30 – 70 1
0.8 1 9 m 42 s 2 24 m 27 s 555 14 23 1 30 – 70 1

9
0.3 1 1 m 12 s 2 8 m 10 s 495 35 47 2 80 – 20 2
0.5 1 6 m 56 s 4 18 m 40 s 512 20 41 0 40 – 60 2

V

0.8 3 15 m 8 s 3 22 m 18 s 569 21 31 1 60 10 30 1

3
0.3 0 36 s 1 2 m 01 s 387 11 9 1 80 20 – –
0.5 1 1 m 33 s 1 10 m 37 s 464 15 7 1 90 – 10 2
0.8 0 37 m 49 s 14 16 m 31 s 883 2 3 0 50 10 40 3

6
0.3 0 1 m 15 s 3 7 m 36 s 633 24 27 3 50 10 40 4
0.5 0 3 m 55 s 1 0 s 270 0 7 0 10 – 90 6
0.8 0 37 m 57 s 18 9 m 17 s 941 0 1 0 30 20 50 3

9
0.3 0 1 m 21 s 44 8 m 15 s 521 9 25 3 80 – 20 5
0.5 1 3 m 25 s 1 0 s 283 0 9 0 10 – 90 6
0.8 0 43 m 13 s 21 7 m 18 s 1006 0 1 0 30 30 40 3

Table 4
Experiments with instances that come from the applications.

Inst. Input Size Time Number of Gap
|L| |R| Dns GH LP PPH (s) IP (s) Prc Nd GH (%) PPH (%)

PB1 32 760 0.4 5 m 24 s 19 m 59 s 0 23 31 1 27 0
PB2 77 760 0.3 6 h 26 m 24 s 30 h 58 m 37 s 0 0 16 0 8 0
MN1 16 4637 0.6 28 m 50 s 1 h 10 m 59 s 0 0 11 0 17 0
MN2 40 4637 0.4 1 h 26 m 28 s 11 h 29 m 9 s 0 0 12 0 5 0

the performance of our branch-and-price algorithm, since the meb problem is strongly related with the pricing problem of
our formulation to the mebp problem.
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